发布网友 发布时间:2022-05-17 18:34
共2个回答
热心网友 时间:2023-11-02 02:02
任何测量都存在误差, 由于测量的客观真值无法得知及测量条件的非理想化,使误差大小无法确定。为了使测量误差减到最小,除选择不同测量方法外,还确立了各种误差特征分类及分布规律,用来作误差处理。 国际计量委员会通过的《BIPM实验不确定度的说明建议书INC-1 ( 1980)》 (以下简称建议书)建议用不确定度(unc ertainty)取代误差(error)来表示实验结果,并按其性质将不确定度从估计方法上分为按统计分布的A类不确定度和按非统计分布的B类不确定度两类,分别进行处理后再进行合成。从而使得“由于测量误差的存在而对被测量值不能确定的程度”得到更科学的评估。 由近年来关于不确定度的许多讨论文章及不确定度的定义,我们可以对误差和不确定度的关系理解为:测量中的不可靠量值为误差,导致测量结果的不可靠量值为不确定度。标准偏差较集中地反映了测量误差对实验结果的影响,而不确定度则综合了全部误差因素对实验结果的影响。但是, 由于不确定度的运用仍在“建议”阶段以及它与误差的紧密联系,且误差从根本上说又是“一种粗略的估计”,所以不确定度的估算很难用简单的定义来解决,而是需要按实际情况合理地加以处理。笔者根据不同实验条件的具体情况,提出几点实验不确定度的实际处理方法。热心网友 时间:2023-11-02 02:03
1.与理想要素比较原则