发布网友 发布时间:2022-05-19 01:41
共4个回答
热心网友 时间:2024-03-02 20:55
简单分析一下即可,详情如图所示
热心网友 时间:2024-03-02 20:55
设平面曲线方程为:f(y,z)=0热心网友 时间:2024-03-02 20:55
内容如下:曲线的参数方程为 {x=t-sint,y=1-cost,z=4sin(t/2) ,分别对 t 求导,得 x '=1-cost,y '=sint,z '=2cos(t/2) ,将 t0=π/2 分别代入,可得切点坐标为(π/2-1,1,2√2)。
切线方向向量 v=(1,1,√2),所以,切线方程为 (x-π/2+1)/1=(y-1)/1=(z-2√2)/√2 ,法平面方程为 1*(x-π/2+1)+1*(y-1)+√2*(z-2√2)=0 .
空间曲线(space curves)是经典微分几何的主要研究对象之一,在直观上曲线可看成空间一个自由度的质点运动的轨迹。
研究空间曲线的有力工具是微积分,我们可以用微积分来推导三个刻划一条空间曲线几何性质的基本几何量,就是弧长、曲率和挠率。
旋转曲面,也称回转曲面,是一类特殊的曲面,它是一条平面曲线绕着它所在的平面上一条固定直线旋转一周所生成的曲面。该直线称为旋转轴,该固定直线称为母线。曲面和过旋转轴的平面的交线称为经线或子午线,曲面和垂直于旋转轴的平面的交线称为纬线或平行圆。
热心网友 时间:2024-03-02 20:56
内容如下:曲线的参数方程为 {x=t-sint,y=1-cost,z=4sin(t/2) ,
分别对 t 求导,得 x '=1-cost,y '=sint,z '=2cos(t/2) ,
将 t0=π/2 分别代入,可得切点坐标为(π/2-1,1,2√2),
切线方向向量 v=(1,1,√2),
所以,切线方程为 (x-π/2+1)/1=(y-1)/1=(z-2√2)/√2 ,
法平面方程为 1*(x-π/2+1)+1*(y-1)+√2*(z-2√2)=0 .