什么是delta函数
发布网友
发布时间:2022-04-22 01:55
我来回答
共1个回答
热心网友
时间:2023-07-05 01:10
delta函数
关于狄拉克delta函数
“请问两个delta(t)函数相乘表示什么意义呢?”
“我在信号与系统中遇到了两个冲激函数相乘的情况,故有此一问”
答:容易想象信号与系统中两个冲激函数相加的情况,但很难想象两个冲激函数相乘的情况。从数学上来讲,两个delta(t)函数相乘是无意义或无定义的。理由如下:
事实上,陈老师上面最后一个方程可看成是delta函数的原始定义。上面提到v(x)是连续函数,这是很自然的事。若v(x)在x=0处不连续或无定义的
话,delta函数也就无定义了。v(x)也称为检验函数,它必须是无穷次可导的光滑函数,则delta函数及其导数才有定义。[Ref.
2]
delta(t)*delta(t)或delta(t+a)*delta(t)是什么呢?若用检验函数来定义一下则v(x)*delta(t+a)形成了对的delta(t)的新的检验函数,非但不光滑,不连续,还是一个奇异函数,故v(x)*delta(t+a)不可能用来定义delta(t)或即
delta(t+a)*delta(t)无定义。
当然,陈老师关于“delta(x)*delta(y)=delta(x,y)
(*指乘积的意思)”的说法还是对的。我们还能从此推出为何delta[f1(t)]*delta[f2(t)]无定义。
我们知道delta函数有如下性质:
delta[f(x)]
=
delta(x-x0)/|f’(x0)|
其中f(x0)=0
对delta[f1(x,y)]*delta[f2(x,y)]我们能推出类似的表达式,但这时分母的导数项成了f1和f2对x和y的雅可比的行列式。当f1和f2都仅仅是x的函数时,行列式为零,分母为零则表达式无定义。
+++++++++++++++++