高中三角比公式整理
发布网友
发布时间:2022-04-27 03:00
我来回答
共2个回答
热心网友
时间:2022-06-25 04:28
满意回答
三角函数公式:
锐角三角函数公式
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA•CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3 α)sin(π/3-α)
cos3α=4cosα·cos(π/3 α)cos(π/3-α)
tan3a = tan a · tan(π/3 a)· tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a a)
=sin2acosa cos2asina
=2sina(1-sin²a) (1-2sin²a)sina
=3sina-4sin³a
cos3a
=cos(2a a)
=cos2acosa-sin2asina
=(2cos²a-1)cosa-2(1-sin²a)cosa
=4cos³a-3cosa
sin3a=3sina-4sin³a
=4sina(3/4-sin²a)
=4sina[(√3/2)²-sin²a]
=4sina(sin²60°-sin²a)
=4sina(sin60° sina)(sin60°-sina)
=4sina*2sin[(60 a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60° a)sin(60°-a)
cos3a=4cos³a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)²]
=4cosa(cos²a-cos²30°)
=4cosa(cosa cos30°)(cosa-cos30°)
=4cosa*2cos[(a 30°)/2]cos[(a-30°)/2]*{-2sin[(a 30°)/2]sin[(a-30°)/2]}
=-4cosasin(a 30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90° (60° a)]
=-4cosacos(60°-a)[-cos(60° a)]
=4cosacos(60°-a)cos(60° a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60° a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1 cosA);
cot(A/2)=sinA/(1-cosA)=(1 cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2 )=(1 cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1 cos(a))
和差化积
sinθ sinφ = 2 sin[(θ φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ φ)/2] sin[(θ-φ)/2]
cosθ cosφ = 2 cos[(θ φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ φ)/2] sin[(θ-φ)/2]
tanA tanB=sin(A B)/cosAcosB=tan(A B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1 tanAtanB)
积化和差
sinαsinβ = [cos(α-β)-cos(α β)] /2
cosαcosβ = [cos(α β) cos(α-β)]/2
sinαcosβ = [sin(α β) sin(α-β)]/2
cosαsinβ = [sin(α β)-sin(α-β)]/2
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(kπ+α)= tanα
cot(kπ+α)= cotα
公式二:
设α为任意角,π α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2 α)= cosα
cos(π/2 α)= -sinα
tan(π/2 α)= -cotα
cot(π/2 α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2 α)= -cosα
cos(3π/2 α)= sinα
tan(3π/2 α)= -cotα
cot(3π/2 α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用
A·sin(ωt θ) B·sin(ωt φ) =
√{(A^2 B^2 2ABcos(θ-φ)} • sin{ ωt arcsin[ (A•sinθ B•sinφ) / √{A^2 B^2; 2ABcos(θ-φ)} }
√表示根号,包括{……}中的内容
诱导公式
sin(-α) = -sinα
cos(-α) = cosα
tan (—a)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2 α) = cosα
cos(π/2 α) = -sinα
sin(π-α) = sinα
cos(π-α) = -cosα
sin(π α) = -sinα
cos(π α) = -cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/〔1 tan^(α/2)〕
cosα=〔1-tan^(α/2)〕/1 tan^(α/2)〕
tanα=2tan(α/2)/〔1-tan^(α/2)〕
其它公式
(1)(sinα)^2 (cosα)^2=1
(2)1 (tanα)^2=(secα)^2
(3)1 (cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA tanB tanC=tanAtanBtanC
证:
A B=π-C
tan(A B)=tan(π-C)
(tanA tanB)/(1-tanAtanB)=(tanπ-tanC)/(1 tanπtanC)
整理可得
tanA tanB tanC=tanAtanBtanC
得证
同样可以得证,当x y z=nπ(n∈Z)时,该关系式也成立
由tanA tanB tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB cotAcotC cotBcotC=1
(6)cot(A/2) cot(B/2) cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2 (cosB)^2 (cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2 (sinB)^2 (sinC)^2=2 2cosAcosBcosC
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
两角和公式
sin(A B) = sinAcosB cosAsinB
sin(A-B) = sinAcosB-cosAsinB
热心网友
时间:2022-06-25 04:28
http://zhidao.baidu.com/question/135817715.html
打开这个网址.很全。