发布网友 发布时间:2023-10-22 09:03
共5个回答
热心网友 时间:2024-11-16 22:53
一、性质不同
1、互斥事件:事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件。也可叙述为:不可能同时发生的事件。如A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥。
2、相互独立是设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立。
二、角度不同
1、互斥事件针对能不能同时发生,即两个互斥事件是指两者不可能同时发生。
2、相互独立的事件针对有没有影响,即两个相互独立事件是指一个事件发生对另一个事件发生的概率没有影响。
联系
假设掷硬币,每一次投得head和投得tail两事件是互相排斥的,不能同时投得head和tail。但第一次投得head这事件和第二次投得tail这事件则是相互独立的,因为第二次投什么,跟第一次投什么没啥关系。在第一个例子中,这两事件互斥,但不是相互独立;而第二个例子中,这两事件相互独立。
逻辑关系
1、对立事件是互斥事件的特例,所以对立事件一定是互斥事件;
2、互斥事件不一定是对立事件,当且仅当两个互斥事件必有一个发生时,它们同时又是对立事件;
3、互斥事件和对立事件均不能同时发生。
若A∩B为不可能事件(A∩B=Φ),那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。
两者的联系在于,对立事件属于一种特殊的互斥事件。它们的区别可以通过定义看出来。一个事件本身与其对立事件的并集等于总的样本空间;而若两个事件互为互斥事件,表明一者发生则另一者必然不发生,但不强调它们的并集是整个样本空间。即对立必然互斥,互斥不一定会对立。
热心网友 时间:2024-11-16 22:53
一、区别:
含义不同:
发生了a就不会发生b,发生了b就不会发生a,它们两个是互斥的。
发生a和发生b没有任何关系,可能都发生,也可能都不发生,也可能只发生一个,就是相互独立事件。
表现不同:
互斥事件就是这个两个事件是不可能同时存在的,而相互独立的事件,就是说这两个事件是相互独立的,但是它们也可能平时存在。
二、联系:
假设掷硬币,每一次投得head和投得tail两事件是互相排斥的,不能同时投得head和tail。但第一次投得head这事件和第二次投得tail这事件则是相互独立的,因为第二次投什么,跟第一次投什么没啥关系。在第一个例子中,这两事件互斥,但不是相互独立;而第二个例子中,这两事件相互独立。
内涵:
1、互斥事件定义中事件A与事件B不可能同时发生是指若事件A发生,事件B就不发生或者事件B发生,事件A就不发生。如,粉笔盒里有3支红粉笔,2支绿粉笔,1支黄粉笔,现从中任取1支,记事件A为取得红粉笔,记事件B为取得绿粉笔,则A与B不能同时发生,即A与B是互斥事件。
2、对立事件是一种特殊的互斥事件。特殊有两点:其一,事件个数特殊(只能是两个事件);其二,发生情况特殊(有且只有一个发生)。若A与B是对立事件,则A与B互斥且A+B为必然事件,故A+B发生的概率为1,即P(A+B)=P(A)+P(B)=1。
以上内容参考:百度百科-互斥事件
热心网友 时间:2024-11-16 22:53
一、区别:
1、含义不同:
发生了a就不会发生b,发生了b就不会发生a,它们两个是互斥的。
发生a和发生b没有任何关系,可能都发生,也可能都不发生,也可能只发生一个,就是相互独立事件。
2、表现不同:
互斥事件就是这个两个事件是不可能同时存在的,而相互独立的事件,就是说这两个事件是相互独立的,但是它们也可能平时存在。
二、联系:
假设掷硬币,每一次投得head和投得tail两事件是互相排斥的,不能同时投得head和tail。但第一次投得head这事件和第二次投得tail这事件则是相互独立的,因为第二次投什么,跟第一次投什么没啥关系。在第一个例子中,这两事件互斥,但不是相互独立;而第二个例子中,这两事件相互独立。
说明:
1、独立性意味着两个随机事件发生与否相互间没有影响;
2、事件A与事件B独立和事件A与事件B互斥是完全不同的两个概念,互斥意味着事件A发生则事件B就不发生,两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生。
3、一般地,如果事件A与B相互独立,那么A与,与B,都是相互独立的;
4、若事件A1,A2,…,An是否发生,相互之间没有影响,那么称A1,A2,…,An相互独立。
热心网友 时间:2024-11-16 22:54
发生了a就不会发生b,发生了b就不会发生a,他们两个是互斥的。热心网友 时间:2024-11-16 22:55
互斥事件是事件A与B不可能同时发生. 相互独立事件的意思是A的发生与否与B毫无关系.同样的,B的发生与否不影响A的发生.