麦克斯韦气体速率分布函数。
发布网友
发布时间:2022-04-26 22:34
我来回答
共4个回答
热心网友
时间:2022-06-19 03:11
希望下面的回答能让你满意:
根据麦克斯韦在1859年发表的论文《气体动力理论的说明》,速度分布率和速率分布率的推导过程大致如下:
设总粒子数为N,粒子速度在x,y,z三个方向的分量分别为v(x),v(y),v(z)。
(1)以dNv(x)表示速度分量v(x)在v(x)到v(x)+dv(x)之间的粒子数,则一个粒子在此dv(x)区间出现的概率为dNv(x)/N。粒子在不同的v(x)附近区间dv(x)内出现的概率不同,用分布函数g(v(x))表示在单位v(x)区间粒子出现的概率,则应有
dNv(x)/N=g(v(x))dv(x)
系统处于平衡态时,容器内各处粒子数密度n相同,粒子朝任何方向运动的概率相等。因此相应于速度分量v(y),v(z),也应有相同形式的分布函数g(v(y)),g(v(z)),使得相应的概率可表示为
dNv(y)/N=g(v(y))dv(y)
dNv(z)/N=g(v(z))dv(z)
(2)假设上述三个概率是彼此独立的,又根据独立概率相乘的概率原理,得到粒子出现在v(x)到v(x)+dv(x),v(y)到v(y)+dv(y),v(z)到v(z)+dv(z)间的概率为
dNv/N=g(v(x))g(v(y))g(v(z))dv(x)dv(y)dv(z)=Fdv(x)dv(y)dv(z)
式中F=g(v(x))g(v(y))g(v(z)),即为速度分布函数。
(3)由于粒子向任何方向运动的概率相等,所以速度分布应与粒子的速度方向无关。因而速度分布函数应只是速度大小v=√(v(x)²+v(y)²+v(z)²)的函数。这样,速度分布函数就可以写成下面的形式:
g(v(x))g(v(y))g(v(z))=F(v(x)²+v(y)²+v(z)²)
要满足这一关系,函数g(v(x))应具有C*exp(A*v(x)^2)的形式。因此可得
F=C*exp(A*v(x)²)*C*exp(A*v(y)²)*C*exp(A*v(z)²)=C³exp(Av²)
下面来定常数C及A。考虑到具有无限大速率的粒子出现的概率极小,故A应为负值。令A=-1/α²,则
dNv/N=C³exp(-v²/α²)dv(x)dv(y)dv(z)=C³exp[-(v(x)²+v(y)²+v(z)²)/α²]dv(x)dv(y)dv(z)
由于粒子的速率在从-∞到+∞的全部速率区间内出现的概率应等于1,即分布函数应满足归一化条件,所以
∫dNv/N=C³∫exp(-v(x)²/α²)dv(x)∫exp(-v(y)²/α²)dv(y)∫exp(-v(z)²/α²)dv(z)=C³√(πα²)³=1,
可得C=1/(α√π),从而得到麦克斯韦速度分布律:
dNv/N=(α√π)‾³exp(-v²/α²)dv(x)dv(y)dv(z)=(α√π)‾³exp[-(v(x)²+v(y)²+v(z)²)/α²]dv(x)dv(y)dv(z)
(4)由上式还可导出速率分布律。可以设想一个用三个相互垂直的轴分别表示v(x),v(y),v(z)的“速度空间”。在这一空间内从原点到任一点(v(x),v(y),v(z))的连线都代表一个粒子可能具有的速度。由于速率分布与速度的方向无关,所以粒子的速率出现在同一速率v处的速率区间dv内的概率相同。这一速率区间是半径为v,厚度为dv的球壳,其总体积为4πv²dv,从而可得粒子的速率在v到v+dv区间出现的概率为
dNv/N=4π(α‾³/√π)exp(-v²/α²)v²dv
(5)确定常数α。由上式可求出粒子速率平方的平均值为
<v²>=∫v²*4π(α‾³/√π)exp(-v²/α²)v²dv=1.5α²,
而由压强微观公式p=nm<v²>/3和理想气体状态方程pV=NkT=nVkT得
<v²>=3kT/m,故α²=2kT/m,
从而可得速度分布率
F(v)=dNv/(Ndv(x)dv(y)dv(z))=√(m/2πkT)³exp(-mv²/2kT)
和速率分布率
f(v)=dNv/(Ndv)=4π√(m/2πkT)³v²exp(-mv²/2kT),
沿x方向的速度分量v(x)的分布率应为
g(v(x))=dNv/(Ndv(x))=√(m/2πkT)exp(-mv(x)²/2kT).
热心网友
时间:2022-06-19 03:12
1.速率分布函数f(v):
一个描述分子运动速率分布状态的函数
分布函数f(v)的物理意义是:速率在
v
附近,单位速率区间的分子数占总分子数的比率.
设速率在
v
到δv的分子数为δn,总分子数为n
2.为什么引入速率分布函数
人们研究分子运动,总想每个分子的速率,及其变化规律,想知道速率为v的分子的数目。
因为分子永不停息的做无规则的热运动,任何单个粒子的速度都因与其它粒子的碰撞而不断变化。想研究某个具体分子的速率及其变化规律就不太现实。
但对于大量粒子来说,如果系统处于或接近处于平衡,处于一个特定的速度范围的粒子所占的比例却几乎不变。麦克斯韦-玻尔兹曼分布具体说明了这个比例。
3.麦克斯韦-玻尔兹曼分布
大量分子的系统处于平衡态时,可以得到速率分布函数的具体形式:
式中t是热力学温度,m为分子质量,k为玻尔兹曼常数。上式就是麦克斯韦速率分布律。
麦克斯韦速率分布是大量分子处于平衡态时的统计分布,也是它的最概然分布。大量分子的集合从任意非平衡态趋于平衡态,其分子速率分布则趋于麦克斯韦速率分布,其根源在于分子间的频繁碰撞。
4.根据麦克斯韦速率分布速率,求最概然速率、平均速率、方根速率
(1)最概然速率
(2)平均速率
(3)方根速率
下面是平均速率,方根速率计算最后一步积分的推算过程
平均速率
方根速率
热心网友
时间:2022-06-19 03:12
麦克斯韦是怎样推出气体速率分布函数的?请高人指点!(要有具体的式子来说明希望下面的回答能让你满意:根据麦克斯韦在1859年发表的论文《气体动力理论的
热心网友
时间:2022-06-19 03:13
那个是实验结果来的。是根据实验倒推出来的经验公式。