发布网友 发布时间:2023-09-12 04:26
共3个回答
热心网友 时间:2024-11-17 04:29
我国魏晋时期的数学家刘徽在注释《九章算术》时创立了有名的“割圆术”,他创造性地将极限思想应用到数学领域。他设圆的半径为一尺,从圆内接正六边形开始,每次把边数加倍,用勾股定理算得圆内接正十二、二十四、四十八…边形的面积,内接正多边形的边数越多,内接多边形的面积就与圆面积越接近。
正如刘徽所说:“割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体,而无所失矣”这已经运用了极限论的思想来解决求圆周率的实际问题了,“以至不可割,则与圆周合体”,这一思想是墨家“不可分”思想的实际应用。
扩展资料:
极限思想的进一步发展是与微积分的建立紧密相联系的。16世纪的欧洲处于资本主义萌芽时期,生产力得到极大的发展,生产和技术中大量的问题,只用初等数学的方法已无法解决,要求数学突破只研究常量的传统范围,而提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展、建立微积分的社会背景。
极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从直线形认识曲线形,从量变认识质变,从近似认识精确。
热心网友 时间:2024-11-17 04:30
刘徽的 “割圆术”在人类历史上首次将极限和无穷小分割引入数学证明。
所谓“割圆术”,是用圆内接正多边形的面积去无限*近圆面积并以此求取圆周率的方法。“圆,一中同长也”。意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。
认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在(2019年)所熟悉的公式。
为了证明这个公式,我国魏晋时期数学家刘徽于公元263年撰写《九章算术注》,在这一公式后面写了一篇1800余字的注记,这篇注记就是数学史上著名的“割圆术”。
扩展资料
刘徽把圆内接正多边形的周长一直算到了正3072边形,并由此而求得了圆周率 为3.1415和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面。
以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于使圆周率精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”。
其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。
热心网友 时间:2024-11-17 04:30
刘徽的 “割圆术”在人类历史上首次将极限和无穷小分割引入数学证明。“割圆术“,以“圆内接正多边形的面积”,来无限*近“圆面积”。刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。