求证:n是自然数时,n∧5-n一定能被30整除。
发布网友
发布时间:2022-04-26 21:08
我来回答
共3个回答
热心网友
时间:2023-11-02 12:30
n^5-n=n*(n^4-1)=(n-1)*n*(n+1)*(n^2+1)
(n-1),n,(n+1)三数中必有一个数能被2整除,一个数能被3整除,故(n-1)*n*(n+1) 必能被6整除,于是n^5-n必能被6整除.
另一方面,如果n能被5整除,则n^5-n也能被5整除,如果n不能被5整除,由于5是素数,由Fermat定理可知,n^5-n也能被5整除,因此对任意的n,n^5-n均能被5整除,于是n^5-n必能被30整除.
热心网友
时间:2023-11-02 12:30
n^5-n=n*(n^4-1)=(n-1)*n*(n+1)*(n^2+1)
(n-1),n,(n+1)三数中必有一个数能被2整除,一个数能被3整除,故(n-1)*n*(n+1) 必能被6整除,于是n^5-n必能被6整除.
另一方面,如果n能被5整除,则n^5-n也能被5整除,如果n不能被5整除,由于5是素数,由Fermat定理可知,n^5-n也能被5整除,因此对任意的n,n^5-n均能被5整除,于是n^5-n必能被30整除.
热心网友
时间:2023-11-02 12:31
明显用数学推断法,很快就出来的
热心网友
时间:2023-11-02 12:31
n^5-n
=n(n^4-1)
=n(n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1)是3个连续整数的积,显然既能被2整除,也能被3整除,
所以n^5-n能被6整除
下面证明n^5-n能被5整除
当n模5余0,1,4的时候显然n(n-1)(n+1)能被5整除
当n模5余2的时候,
设n=5m+2
n^2+1=(5m+2)^2+1
=25m^2+20m+5
能被5整除
当n模5余3的时候,
设n=5m+3
n^2+1=(5m+3)^2+1
=25m^2+30m+10
也能被5整除
因此
n^5-n能被5整除
又n^5-n能被6整除
所以n^5-n能被30整除
热心网友
时间:2023-11-02 12:31
明显用数学推断法,很快就出来的
热心网友
时间:2023-11-02 12:31
n^5-n
=n(n^4-1)
=n(n^2-1)(n^2+1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1)是3个连续整数的积,显然既能被2整除,也能被3整除,
所以n^5-n能被6整除
下面证明n^5-n能被5整除
当n模5余0,1,4的时候显然n(n-1)(n+1)能被5整除
当n模5余2的时候,
设n=5m+2
n^2+1=(5m+2)^2+1
=25m^2+20m+5
能被5整除
当n模5余3的时候,
设n=5m+3
n^2+1=(5m+3)^2+1
=25m^2+30m+10
也能被5整除
因此
n^5-n能被5整除
又n^5-n能被6整除
所以n^5-n能被30整除