和角公式
发布网友
发布时间:2022-04-26 17:19
我来回答
共3个回答
热心网友
时间:2023-05-26 04:45
Sin(A+B)=SinA*CosB+SinB*CosA Sin(A-B)=SinA*CosB-SinB*CosA Cos(A+B)=CosA*CosB-SinA*SinB Cos(A-B)=CosA*CosB+SinA*SinB Tan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)
编辑本段附加内容
★诱导公式★ 常用的诱导公式有以下几组: 1.sinα^2 +cosα^2=1 2.sinα/cosα=tanα 3.tanα=1/cotα 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 口诀:奇变偶不变,符号看象限
同角三角函数的关系(即同角八式)
平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商数关系 sina/cosa=tana cosa/sina=cota 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, sina=y/r 余弦等于角A的邻边比斜边 cosa=x/r 正切等于对边比邻边, tana=y/x 三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=vercos(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) · 万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
部分高等内容
·高等代数中三角函数的指数表示(由泰勒级数易得): sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。 ·三角函数作为微分方程的解: 对于微分方程组 y=-y'';y=y'''',有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。 特殊三角函数值 a 0` 30` 45` 60` 90` sina 0 1/2 √2/2 √3/2 1 cosa 1 √3/2 √2/2 1/2 0 tana 0 √3/3 1 √3 None cota None √3 1 √3/3 0 三角函数的计算 幂级数 c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞) 它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数. 泰勒展开式(幂级数展开法): f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+... 实用幂级数: ex = 1+x+x2/2!+x3/3!+...+xn/n!+... ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1) sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞) cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞) arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1) arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1) arctan x = x - x^3/3 + x^5/5 - ... (x≤1) sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞) cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞<x<∞) arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1) arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1) -------------------------------------------------------------------------------- 傅立叶级数(三角级数) f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx) a0=1/π∫(π..-π) (f(x))dx an=1/π∫(π..-π) (f(x)cosnx)dx bn=1/π∫(π..-π) (f(x)sinnx)dx sin2a=2sinacosa cos2a=cosa^2-sina^2 =1-2sina^2 =2cosa^2-1 tan2a=2tana/1-tana^2
热心网友
时间:2023-05-26 04:46
Sin(A+B)=SinA*CosB+SinB*CosA
Sin(A-B)=SinA*CosB-SinB*CosA
Cos(A+B)=CosA*CosB-SinA*SinB
Cos(A-B)=CosA*CosB+SinA*SinB
Tan(A+B)=(TanA+TanB)/(1-TanA*TanB)
Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)
常用的诱导公式有以下几组:
1.sinα^2 +cosα^2=1
2.sinα/cosα=tanα
3.tanα=1/cotα
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
口诀:奇变偶不变,符号看象限
同角三角函数的关系(即同角八式)
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
•积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
•倒数关系:
tanα•cotα=1
sinα•cscα=1
cosα•secα=1
商数关系
sina/cosa=tana
cosa/sina=cota
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
sina=y/r
余弦等于角A的邻边比斜边
cosa=x/r
正切等于对边比邻边,
tana=y/x
三角函数恒等变形公式
•两角和与差的三角函数:
cos(α+β)=cosα•cosβ-sinα•sinβ
cos(α-β)=cosα•cosβ+sinα•sinβ
sin(α±β)=sinα•cosβ±cosα•sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)
•辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
•倍角公式:
sin(2α)=2sinα•cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
•三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
•半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
•降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
• 万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
•积化和差公式:
sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]
•和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
热心网友
时间:2023-05-26 04:46
三角函数和角公式
又称三角函数的加法定理
是几个角的和(差)的三角函数通过其中各个角的三角函数来表示的关系
一般的最常用公式有:
Sin(A+B)=SinA*CosB+SinB*CosA
Sin(A-B)=SinA*CosB-SinB*CosA
Cos(A+B)=CosA*CosB-SinA*SinB
Cos(A-B)=CosA*CosB+SinA*SinB
Tan(A+B)=(TanA+TanB)/(1-TanA*TanB)
Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)