求数学迭代法的意义和应用包括雅可比,高斯-赛德尔迭代法的最好!急急急!!!!!!!!!!!!!!!!
发布网友
发布时间:2022-04-26 17:06
我来回答
共2个回答
热心网友
时间:2023-10-16 03:44
迭代法是数值计算中的内容,迭代法也称为逐次*近法。他是求一般的方程如f(x)=0以及有n个未知量的方程组如fi(x1,x2,x3,x4,.........xn)的近似解得普片适用方法,这里的近似解比一般方法要精确,比如说二分法或者试探法,要是用这些方法得到的解只是大体范围,要是想得到比较精确地结果的话,就需要很多次的计算,这样计算量很大。所以说迭代法可以使得到的答案更精确,而且计算量也比一般方法少。
雅可比法和高斯-赛德尔迭代法则是解线性方程组的,而且适合用于求解系数矩阵很多元素都是零的线性代数方程组。而雅可比法和高斯-赛德尔迭代法的区别就是前一个是同时代换,后一个是逐个代换。
具体的计算还是比较麻烦的,而且不是很容易懂的,上课一定不能走神,要不就完了!呵呵呵,你可以看看《数值计算》这本书。里面有更详细的解释的,希望对你有帮助。
你所说的是高斯消去法吧!这里主要就是讲究一个选取主元的方法问题了,他的意义主要在于减少误差,因为主元选的比较小的话可能会产生较大的误差,一般都选一行或者一列中绝对值大的那个,具体的要慢慢想的,很耗时间的,不过比较有意思,呵呵
热心网友
时间:2023-10-16 03:45
设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。 解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)-f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。 牛顿迭代法示意图
军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B = A操作),然后A 再前进占领新的位置,B再跟上……直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置*近的方法称之为迭代法。 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。 二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。 三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。 最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理: 定理:*(a, b) = *(b, a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 。假设d是a,b的一个公约数,则有 d%a==0, d%b==0,而r = a - kb,因此d%r==0 ,因此d是(b, a mod b)的公约数 同理,假设d 是(b, a mod b)的公约数,则 d%b==0 , d%r==0 ,但是a = kb +r ,因此d也是(a,b)的公约数 。 因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。 欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。其算法用C语言描述为: int Gcd_2(int a, int b)// 欧几里德算法求a, b的最大公约数 { if (a<=0 || b<=0) //预防错误 return 0; int temp; while (b > 0) //b总是表示较小的那个数,若不是则交换a,b的值 { temp = a % b; //迭代关系式 a = b; //a是那个胆小鬼,始终跟在b的后面 b = temp; //b向前冲锋占领新的位置 } return a; } 从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b; 根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。 还有一个很典型的例子是斐波那契(Fibonacci)数列。斐波那契数列为:0、1、1、2、3、5、8、13、21、…,即 fib(1)=0; fib(2)=1; fib(n)=fib(n-1)+fib(n-2) (当n>2时)。 在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型的迭代关系,所以我们可以考虑迭代算法。 int Fib(int n) //斐波那契(Fibonacci)数列 { if (n < 1)//预防错误 return 0; if (n == 1 || n == 2)//特殊值,无需迭代 return 1; int f1 = 1, f2 = 1, fn;//迭代变量 int i; for(i=3; i<=n; ++i)//用i的值来*迭代的次数 { fn = f1 + f2; //迭代关系式 f1 = f2; //f1和f2迭代前进,其中f2在f1的前面 f2 = fn; } return fn; }