发布网友 发布时间:2023-09-18 21:18
共5个回答
热心网友 时间:2024-11-23 17:26
数学期望
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
扩展资料:
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。
变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数
,因而k是离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数
等,因而称这随机变量是连续型随机变量。
参考资料来源:百度百科-数学期望
参考资料来源:百度百科-均值
热心网友 时间:2024-11-23 17:27
E(x)指数学期望。
数学期望是一种重要的数字特征,它反映随机变量平均取值的大小,是试验中每次可能结果的概率乘以其结果的总和。这里的“期望”一词来源于*,大概意思是当你下注时,期望赢得多少钱。
期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
扩展资料
应用:
1、随机炒股
随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。
3、价值投资
由于价值低估买,所以胜率比较高,且价值投资都预留安全边际,也就是向上的空间巨大,而下跌空间有限,所以数学期望值一定为正。
参考资料来源:百度百科-数学期望
热心网友 时间:2024-11-23 17:27
mc原意是指说唱歌手,现在随着mc的广泛使用,逐渐衍生出许多意思来,也可以指能调节气氛的人,会说rap的人还有能主持控制住全场的人,因此现在许多说唱歌手会在自己艺名前加上mc的前缀,就是在暗示自己的职位是说唱歌手。
热心网友 时间:2024-11-23 17:28
E(x)指期望。热心网友 时间:2024-11-23 17:29
,Ralph Lauren Solid Polos