C4植物和C3植物是什么植物?
发布网友
发布时间:2023-07-21 13:11
我来回答
共1个回答
热心网友
时间:2024-02-17 10:22
对于小麦、水稻等大多数绿色植物来说,在暗反应阶段中,一个CO2被一个C5固定以后,形成的是两个C3。但是,科学家在研究玉米、甘蔗等原产在热带地区绿色植物的光合作用时发现,当向这些绿色植物提供14CO2时,光合作用开始后的1s内,竟有90%以上的14C出现在含有四个碳原子的有机酸(用C4表示)中。随着光合作用的进行,C4中的14C逐渐减少,而C3中的14C逐渐增多。这说明在这类绿色植物的光合作用中,CO2中的C首先转移到C4中,然后才转移到C3中。科学家们将这种固定CO2的途径叫做C4途径,将这类具有C4途径的植物叫做C4植物;将CO2固定后直接形成C3的途径叫做C3途径,将具有C3途径的植物叫做C3植物。C3植物和C4植物不仅固定CO2的途径不同,而且叶片结构也具有各自的特点。
C3植物和C4植物叶片结构的特点
绿色植物的叶片中有由导管和筛管等构成的维管束,围绕着维管束的一圈薄壁细胞叫做维管束鞘细胞。C3植物叶片中的维管束鞘细胞不含叶绿体,维管束鞘以外的叶肉细胞排列疏松,但都含有叶绿体(如图)。C4植物的叶片中,围绕着维管束的是呈“花环型”的两圈细胞:里面的一圈是维管束鞘细胞,外面的一圈是一部分叶肉细胞。C4植物中构成维管束鞘的细胞比较大,里面含有没有基粒的叶绿体,这种叶绿体不仅数量比较多,而且个体比较大,叶肉细胞则含有正常的叶绿体(如图)。
科学研究表明,C3植物和C4植物之所以具有不同的固定CO2的途径,与两者叶片结构上的差异有着直接的关系。
C4植物光合作用的特点
在C4植物叶肉细胞的叶绿体中,在有关酶的催化作用下,一个CO2被一个叫做磷酸烯醇式丙酮酸的C3(英文缩写符号是PEP)固定,形成一个C4。C4进入维管束鞘细胞的叶绿体中,释放出一个CO2,并且形成一个含有三个碳原子的有机酸——丙酮
这种能够固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,简称PEP羧化酶。
酸。释放出来的CO2先被一个C5固定,然后很快形成两个C3。在有关酶的催化作用下,一些C3接受ATP和NADPH释放出的能量并且被NADPH还原,然后经过一系列复杂的变化,形成糖类等有机物;另一些C3则经过复杂的变化,又形成C5,从而使暗反应阶段的化学反应不断地进行下去。C4释放出的CO2的变化情况,与C3植物暗反应阶段的变化情况相同。丙酮酸则再次进入到叶肉细胞中的叶绿体内,在有关酶的催化作用下,通过ATP提供的能量,转化成PEP,PEP则可以继续固定CO2(如图)。
由此可见,C4植物的光合作用中既有C4途径,又有C3途径,前者发生在叶肉细胞的叶绿体内,后者发生在维管束鞘细胞的叶绿体内,两者共同完成二氧化碳的固定。
同C3途径中有关的酶与CO2的亲和力相比,C4途中PEP羧化酶与CO2的亲和力约高60倍。
C4植物利用PEP将CO2固定在C4中,C4经过一系列的变化后,又把CO2释放出来,这有什么意义呢?原来,C4途径中能够固定CO2的那种酶,对CO2
同C3途径中有关的酶与CO2的亲和力相比,C4途中PEP羧化酶与CO2的亲和力约高60倍。
C4植物利用PEP将CO2固定在C4中,C4经过一系列的变化后,又把CO2释放出来,这有什么意义呢?原来,C4途径中能够固定CO2的那种酶,对CO2具有很强的亲合力,可以促使PEP把大气中浓度很低的CO2固定下来,并且使C4集中到维管束鞘细胞内的叶绿体中,供维管束鞘细胞内叶绿体中的C3途径利用。科学家们把C4植物的这种独特作用,形象地比喻成“二氧化碳泵”(如图)。同C3植物相比,C4植物大大提高了固定CO2的能力。在干旱的条件下,绿色植物的气孔关闭。这时,C4植物能够利用叶片内细胞间隙中含量很低的CO2进行光合作用,而C3植物则不能。这就是C4植物比C3植物具有较强光合作用的原因之一。