微分方程的解是什么?
发布网友
发布时间:2023-07-14 00:05
我来回答
共1个回答
热心网友
时间:2023-09-27 12:30
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。
例如:
其解为:
其中C是待定常数;
如果知道
则可推出C=1,而可知 y=-\cos x+1。
一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常数变易法:
对于方程:y'+p(x)y+q(x)=0,可知其通解:
然后将这个通解代回到原式中,即可求出C(x)的值。
二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解
对于方程:
可知其通解:
其特征方程:
根据其特征方程,判断根的分布情况,然后得到方程的通解
一般的通解形式为:
若
则有
若
则有
在共轭复数根的情况下:
r=α±βi
扩展资料
一阶微分方程的普遍形式
一般形式:F(x,y,y')=0
标准形式:y'=f(x,y)
主要的一阶微分方程的具体形式
约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
唯一性
存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。
针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理 [4] 则可以判别解的存在性及唯一性。
针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
参考资料来源:百度百科-常微分方程
参考资料来源:百度百科-微分方程
微分方程的解是什么意思
微分方程的解是指使方程左右两边相等的未知数的值。微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限...
微分方程的解一定是方程的解吗?
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。例如:其解为:其中C是待定常数;如果知道 则可推出C=1,而可知 y=-\cos x+1。一阶线性常微分方程 对于一阶线性常微分方程,常用的方法是常数变易法:对于方程:y'+p(x)y+q(x)=0,可知其通解:然后...
微分方程的解是什么意思
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。例如:dy/dx=sin x,其解为: y=-cos x+C,其中C是待定常数;如果知道y=f(π)=2,则可推出C=1,而可知 y=-\cos x+1。一阶线性常微分方程 对于一阶线性常微分方程,常用的方法是常数变易法:对于...
什么叫做微分方程的解
微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。比如:y'=x就是一个微分方程:解法:dy/dx=x;dy=xdx;dy=1/2dx^2;则y=1/2x^2+C。
微分方程的解通常是什么?
微分方程的解是指满足给定微分方程的函数或函数族。一般来说,微分方程可以有多个解,这取决于方程的类型和初值条件。微分方程可以分为常微分方程和偏微分方程。常微分方程涉及到一个或多个未知函数及其导数,而偏微分方程涉及到一个或多个未知函数及其偏导数。常微分方程的解可以是一个具体的函数形式,...
微分方程的解是什么意思啊!
微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为...
微分方程的解是什么意思
结论是,微分方程的解是数学中寻找的那个神秘的函数,它使得方程两边的表达式完全吻合。微分方程的本质在于它描述了未知函数与其导数之间的动态关系。解决这类问题的挑战在于,有时候我们可能无法找到一个简洁的公式直接给出答案,这就需要借助于数值分析的方法,通过计算机的精确计算来逼近这个解,也就是所谓...
微分方程的解是指什么?
微分方程中有多个变量,其中一个是未知函数。方程中包含的未知函数的导数的最高阶数,称为方程的阶。如xy''+x^3(y')^5-sin(y)=0,其中y是未知函数,其出现在方程中的最高阶导数为y'',是二阶导数,方程的阶为二阶方程。
微分方程的解是指什么?
微分方程的特解是指满足微分方程的某个特定常数。例如,对于微分方程xy'=8x^2,通解是y=4x^2+C,其中C是任意常数。而特解则是y=4x^2,其中没有任意常数。例如,一阶线性微分方程的通解包括一个任意常数,而特解则不包含任意常数。二、微分方程的种类 1、根据未知函数的个数和阶数,微分方程可以...
什么是微分方程的解?通解和特解是什么?
1、微分方程,是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。2、数学领域对微分方程的研究着重在几个不同的面向...