设A是有限集 在A上什么等价关系能得到最多的等价类?什么等价关系能得到最少的等价类?
发布网友
发布时间:2023-07-13 15:39
我来回答
共1个回答
热心网友
时间:2023-09-11 20:01
集合上每个等价关系对应集合的一种划分,集合的每一种划分又对应于该集合的一个等价关系,不同的等价关系对应于集合的划分也不同,因此集合有多少不同划分,就有多少不同等价关系,三个元素的集合共有5种不同划分,(含有1块和3块各有1种,含有2块有3种),故含有三个元素的集合,可以确定5种等价关系.
如A={1,2,3},则5种不同划分为
{{1},{2},{3}};{{1},{2,3}};{{1,3},{2}};{{1,2},{3}};{{1,2,3}};
对应的等价关系为
R1={(1,1),(2,2),(3,3)};R2={(1,1),(2,2),(2,3),(3,2),(3,3)};
R3={(1,1),(1,3),(3,1),(2,2),(3,3)};
R4={(1,1),(1,2),(2,1),(2,2),(3,3)};
R5={(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)};
一般地,对有n个元素的集合有Bn种不同的划分(等价关系),Bn称为Catalan数
Bn=2n!/((n+1)n!n!),如4个元素的集合,可以确定14种等价关系.