发布网友 发布时间:2022-04-24 21:58
共3个回答
热心网友 时间:2023-10-09 20:51
三次方根号下的数或式子的取值范围是全体实数R。
如果是偶数次方根号(如二次方根号,四次方根号),那么根号下的式子必须大于等于0,因为负数没有偶数次方跟
但是如果是奇数次方根号(如三次方根号,五次方根号),那么根号下的式子可以取全体实数。因为负数也有奇数次方跟。
所以三次方根号本身对定义域无影响。
扩展资料:
定义域 指该函数的有效范围,其关于原点对称是指它有效值关于原点对称 。函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。例如:函数y=2x+1,规定其定义域为-10,10,是对称的。
f(x)是函数的符号(y),f代表法则,y它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。
例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。
值域定义
函数中,因变量的取值范围叫做函数的值域,在数学中是函数在定义域中应变量所有值的集合
常用的求值域的方法
(1)化归法;
(2)图象法(数形结合)
(3)函数单调性法,
(4)配方法,
(5)换元法,
(6)反函数法(逆求法),
(7)判别式法,
(8)复合函数法,
(9)三角代换法,
(10)基本不等式法等
参考资料:百度百科-函数定义域
热心网友 时间:2023-10-09 20:51
三次方根号下的数或式子的取值范围是全体实数R。
如果是偶数次方根号(如二次方根号,四次方根号),那么根号下的式子必须大于等于0,因为负数没有偶数次方跟。
但是如果是奇数次方根号(如三次方根号,五次方根号),那么根号下的式子可以取全体实数。因为负数也有奇数次方跟。
所以三次方根号本身对定义域无影响。
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。这就是说,如果x^3=a,那么x叫做a的立方根 。(注意:在平方根中的根指数2可省略不写,但三次方根中的根指数3不能省略,要写在根号的左上角。)
扩展资料:
设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;
如果一个函数是具体的,它的定义域我们不难理解。但如果一个函数是抽象的,它的定义域就难以捉摸。
求函数的定义域:
y=1/x 分母不等于0;
y=sprx 根号内大于等于0;
y=logaX 对数底数大于0且不等于1,真数大于0。
三次方根性质:
(1)正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(2)在实数范围内,任何实数的立方根只有一个。
(3)在实数范围内,负数不能开平方,但可以开立方。
(4)立方与开立方运算,互为逆运算。
(5)在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
(6)在复数范围内,负数既可以开平方,又可以开立方。
参考资料:百度百科——函数定义域
热心网友 时间:2023-10-09 20:52
三次方根号下的数或式子的取值范围是全体实数R。