拉格朗日方法
发布网友
发布时间:2022-04-24 06:34
我来回答
共4个回答
热心网友
时间:2022-06-17 00:07
拉格朗日方法
刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了*性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。
中文名
拉格朗日方法
方 法
拉格朗日陀螺
意 义
对流体运动的理论也有贡献
解 决
*性三体运动的定型问题
拉格朗日生平
拉格朗日1736年1月25日生于意大利西北部的都灵。父亲是法国陆军骑兵里的一名军官,后由于经商破产,家道中落。据拉格朗日本人回忆,如果幼年是家境富裕,他也就不会作数学研究了,因为父亲一心想把他培养成为一名律师。拉格朗日个人却对法律毫无兴趣。
到了青年时代,在数学家雷维里的教导下,拉格朗日喜爱上了几何学。17岁时,他读了英国天文学家哈雷的介绍牛顿微积分成就的短文《论分析方法的优点》后,感觉到“分析才是自己最热爱的学科”,从此他迷上了数学分析,开始专攻当时迅速发展的数学分析。
18岁时,拉格朗日用意大利语写了第一篇论文,是用牛顿二项式定理处理两函数乘积的高阶微商,他又将论文用拉丁语写出寄给了当时在柏林科学院任职的数学家欧拉。不久后,他获知这一成果早在半个世纪前就被莱布尼兹取得了。这个并不幸运的开端并未使拉格朗日灰心,相反,更坚定了他投身数学分析领域的信心。
1755年拉格朗日19岁时,在探讨数学难题“等周问题”的过程中,他以欧拉的思路和结果为依据,用纯分析的方法求变分极值。第一篇论文“极大和极小的方法研究”,发展了欧拉所开创的变分法,为变分法奠定了理论基础。变分法的创立,使拉格朗日在都灵声名大震,并使他在19岁时就当上了都灵皇家炮兵学校的教授,成为当时欧洲公认的第一流数学家。1756年,受欧拉的举荐,拉格朗日被任命为普鲁士科学院通讯院士。
1764年,法国科学院悬赏征文,要求用万有引力解释月球天平动问题,他的研究获奖。接着又成功地运用微分方程理论和近似解法研究了科学院提出的一个复杂的六体问题(木星的四个卫星的运动问题),为此又一次于1766年获奖。
1766年德国的腓特烈大帝向拉格朗日发出邀请时说,在“欧洲最大的王”的宫廷中应有“欧洲最大的数学家”。于是他应邀前往柏林,任普鲁士科学院数学部主任,居住达20年之久,开始了他一生科学研究的鼎盛时期。在此期间,他完成了《分析力学》一书,这是牛顿之后的一部重要的经典力学著作。书中运用变分原理和分析的方法,建立起完整和谐的力学体系,使力学分析化了。他在序言中宣称:力学已经成为分析的一个分支。
1783年,拉格朗日的故乡建立了"都灵科学院",他被任命为名誉院长。1786年腓特烈大帝去世以后,他接受了法王路易十六的邀请,离开柏林,定居巴黎,直至去世。
这期间他参加了巴黎科学院成立的研究法国度量衡统一问题的委员会,并出任法国米制委员会主任。1799年,法国完成统一度量衡工作,制定了被世界公认的长度、面积、体积、质量的单位,拉格朗日为此做出了巨大的努力。
1791年,拉格朗日被选为英国皇家学会会员,又先后在巴黎高等师范学院和巴黎综合工科学校任数学教授。1795年建立了法国最高学术机构——法兰西研究院后,拉格朗日被选为科学院数理委员会*。此后,他才重新进行研究工作,编写了一批重要著作:《论任意阶数值方程的解法》、《解析函数论》和《函数计算讲义》,总结了那一时期的特别是他自己的一系列研究工作。
1813年4月3日,拿破仑授予他帝国大十字勋章,但此时的拉格朗日已卧床不起,4月11日早晨,拉格朗日逝世
热心网友
时间:2022-06-17 00:08
刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了*性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。
拉格朗日方法是对积分进行极值化,函数y=y(x)待定.他不象欧拉和前人用改变极大或极小化曲线的个别坐标的办法,而是引进通过端点(x1,y1),(x2,y2)的新曲线
y(x)+δy(x),
δy(x)叫曲线y(x)的变分.J相应的增量△J按δy,δy′展开的一、二阶项叫一次变分δJ和二次变分δ2J.他用分析方法证明了δJ为零的必要条件就是欧拉方程
他还继续讨论了端点变动时的情况以及两个自变量的重积分的情况,使这个分支继续发展.1770年以后,拉格朗日还研究了被积函数f包含高阶导数的单重和多重积分时的情况,现在已发展成为变分法的标准内容.
2.微分方程.早在都灵时期,拉格朗日就对变系数常微分方程研究做出重大成果.他在降阶过程中提出了以后所称的伴随方程,并证明了非齐次线性变系数方程的伴随方程的伴随方程,就是原方程的齐次方程.他还把欧拉关于常系数齐次方程的结果推广到变系数情况,证明了变系数齐次方程的通解可用一些独立特解乘上任意常数相加而成;而且在知道方程的m个特解后,可以把方程降低m价.
在柏林时期,他对常微分方程的奇解和特解做出历史性贡献,在1774年完成的“关于微分方程特解的研究”(Sur les intégralesparticulieres des equations différentielles)中系统地研究了奇解和通解的关系,明确提出由通解及其对积分常数的偏导数消去常数求出奇解的方法;还指出奇解为原方程积分曲线族的包络线.当然,他的奇解理论还不完善,现代奇解理论的形式是由G.达布(Darboux)等人完成的.
常微分方程组的研究在当时结合天体力学中的课题进行.拉格朗日在1772年完成的“论三体问题”(Essai sur le problémedes trois corps)中,找出了三体运动的常微分方程组的五个特解:三个是三体共线情况;两个是三体保持等边三角形;在天体力学中称为拉格朗日平动解.他同拉普拉斯一起完善的任意常数变异法,对多体问题方程组的近似解有重大作用,促进了摄动理论的建立.
拉格朗日是一阶偏微分方程理论的建立者,他在1772年完成的。“关于一阶偏微分方程的积分”(Sur l'integration des équationau differences partielles premier order)和1785年完成的“一阶线性偏微分方程的一般积分方法”(Méthode génèrale pourintégrer les equations partielles premier order lorsque cesdifferences ne sont que linèaires)中,系统地完成了一阶偏微分方程的理论和解法.
他首先提出了一阶非线性偏微分方程的解分类为完全解、奇解、通积分等,并给出它们之间的关系.还对形如
的非线性方程,化为解线性方程
后来又进一步证明了解线性方程
Pp+Qq=R(P,Q,R为x,y,z的函数)(5)
与解
等价,而解(6)式又与解常微分方程组
等价.(5)式至今仍称为拉格朗日方程.有趣的是,由上面已可看出,一阶非线性偏微分方程,可以化为解常微分方程组.但拉格朗日自己却不明确,他在1785年解一个特殊的一阶偏微分方程时,还说不能用这种方法,可能他忘记了自己在1772年的结果.现代也有时称此方法为拉格朗日方法,又称为柯西(Cauchy)的特征方法.因拉格朗日只讨论两个自变量情况,在推广到n个自变量时遇到困难,而后来由柯西在1819年克服.
3.方程论.18世纪的代数学从属于分析,方程论是其中的活跃领域.拉格朗日在柏林的前十年,大量时间花在代数方程和超越方程的解法上.
他在代数方程解法中有历史性贡献.在长篇论文“关于方程的代数解法的思考” (Réflexions sur le resolution algébrique desequations,《全集》Ⅲ, pp 205—421)中,把前人解三、四次代数方程的各种解法,总结为一套标准方法,而且还分析出一般三、四次方程能用代数方法解出的原因.三次方程有一个二次辅助方程,其解为三次方程根的函数,在根的置换下只有两个值;四次方程的辅助方程的解则在根的置换下只有三个不同值,因而辅助方程为三次方程.拉格朗日称辅助方程的解为原方程根的预解函数(是有理函数).他继续寻找5次方程的预解函数,希望这个函数是低于5次的方程的解,但没有成功.尽管如此,拉格朗日的想法已蕴含着置换群概念,而且使预解(有理)函数值不变的置换构成子群,子群的阶是原置换群阶的因子.因而拉格朗日是群论的先驱.他的思想为后来的N.H.阿贝尔(Abel)和 E.伽罗瓦(Galois)采用并发展,终于解决了高于四次的一般方程为何不能用代数方法求解的问题.
拉格朗日在1770年还提出一种超越方程的级数解法.设p为方程
这就是后来在天体力学中常用的拉格朗日级数.他自己没有讨论收敛性,后来由柯西求出此级数的收敛范围.
4.数论.拉格朗日到柏林初期就开始研究数论,第一篇论文“二阶不定问题的解”(Sur la solution des problémès in détèrminés seconde degrés和送交都灵《论丛》的“一个算术问题的解”(Solution d'un problème d'arithmetique)中,讨论了欧拉多年从事的费马(Fermat)方程
x2-Ay2=1(x,y,A为整数),(9)
不定问题解的新方法”(Nouvelle méthode pour resoudveles problèmes indéteminés en nombres entiers)中得到更一般的费马方程
x2-Ay2=B(B也为整数)(10)
的解.还讨论了更广泛的二元二次整系数方程
ax2+2bxy+cy2+2dx+2ey+f=0,(11)
并解决了整数解问题.
热心网友
时间:2022-06-17 00:08
刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了*性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。拉格朗日法是描述流体运动的两种方法之一,又称随体法,跟踪法。 是研究流体各个质点的运动参数(位置坐标、速度、加速度等)随时间的变化规律。综合所有流体质点运动参数的变化,便得到了整个流体的运动规律。 在研究波动问题时,常用拉格朗日法。拉格朗日法中,三维空间中单个流体质点的位置坐标是时间的函数,其中,下标表示第个流体质点。通过对时间求导数,可以得到每一个流体质点的运动速度和加速度。流场中有无穷多流体质点,这种离散表达式就有无穷多个,应用时很不方便。因此,拉格朗日法一般用流体质点的初始坐标来标识不同的流体质点,不同的流体质点有不同的初始坐标,称为拉格朗日变量。所以第个流体质点在时刻的位置坐标就可以表示流体质点运动规律的运动方程。对于给定的,此式即表示初始坐标为的流体质点的运动轨迹。若给定时间,上式为时刻流体质点的位置
热心网友
时间:2022-06-17 00:09
刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了*性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。