发布网友 发布时间:2023-06-26 06:30
共1个回答
热心网友 时间:2024-11-19 10:30
概念
根据克努曾数的大小不同,稀薄气体的运动分为滑流、过渡流和自由分子流三个领域。稀薄气体动力学研究这三种不同流动的规律以及气体与物体的相互作用,包括气流对物体的传热、物体所受的阻力、举力等。
基本方程和边界条件
稀薄气体动力学利用分子运动论的方法,根据流动问题中气体稀薄程度的不同,分析气体分子离散结构的效应。分子运动论的基本方程─玻耳兹曼方程也是稀薄气体动力学的基本方程。它是描述分子运动速度分布函数f的变化规律的方程。设在时间t,在靠近点x的物理空间元dx内,在靠近速度v的速度空间元dv内的质点分子或光滑球分子的数目为fdxdv。f满足下述玻耳兹曼方程:,
式中x (F,t)为作用在分子上的外力场;m为分子质量;Q(f,f)为碰撞积分,代表由分子相互碰撞引起的f的变化。为了求解玻耳兹曼方程,须引进边界条件,即描述气体分子与固体表面相互作用的条件。气体分子与固体表面相互作用的理论迄今仍不完善,实验数据尚不充分。分子在固体表面的反射依赖于固体表面与气体分子的物理、化学本质和它们的温度,以及粘着于表面的气体吸附层。现在一般利用麦克斯韦提出的反射模型。假设分子有α部分从表面完全漫反射,其余(1-α)部分则完全是镜面反射,自固体表面反射的分子,其分布函数fr由下式决定:
式中vr为反射分子的速度;hr=m/2kTr;k为玻耳兹曼常数;Tr为物面温度;fi为入射分子的分布函数;n为物体表面单位法向量;nr为反射分子的数密度;右端第二项为温度适应于表面温度的麦克斯韦分布。实验表明,麦克斯韦条件在α近于1时能给出满意的结果。
将玻耳兹曼方程(1)两端乘以分子的质量、 动量分量和动能,再将各项对速度空间积分就得到质量、动量和动能的输运方程。从麦克斯韦分布出发用小扰动法求解玻耳兹曼方程,相应的输运方程的零阶和一阶近似即为流体力学中的欧拉方程和纳维-斯托克斯方程(见流体力学基本方程组)。