发布网友 发布时间:2022-04-24 08:18
共1个回答
热心网友 时间:2022-06-17 23:19
在做分类的时候,经常需要画混淆矩阵,下面我们使用python的matplotlib包,scikit-learning机器学习库也同样提供了例子:, 但是这样的图并不能满足我们的要求,
首先是刻度的显示是在方格的中间,这需要隐藏刻度,其次是如何把每个label显示在每个方块的中间, 其次是如何在每个方格中显示accuracy数值, 最后是如何在横坐标和纵坐标显示label的名字,在label name比较长的时候,如何处理显示问题。
直接贴上代码:
[python] view plain copy
'''''compute confusion matrix
labels.txt: contain label name.
predict.txt: predict_label true_label
'''
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
#load labels.
labels = []
file = open('labels.txt', 'r')
lines = file.readlines()
for line in lines:
labels.append(line.strip())
file.close()
y_true = []
y_pred = []
#load true and predict labels.
file = open('predict.txt', 'r')
lines = file.readlines()
for line in lines:
y_true.append(int(line.split(" ")[1].strip()))
y_pred.append(int(line.split(" ")[0].strip()))
file.close()
tick_marks = np.array(range(len(labels))) + 0.5
def plot_confusion_matrix(cm, title='Confusion Matrix', cmap = plt.cm.binary):
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
xlocations = np.array(range(len(labels)))
plt.xticks(xlocations, labels, rotation=90)
plt.yticks(xlocations, labels)
plt.ylabel('True label')
plt.xlabel('Predicted label')
cm = confusion_matrix(y_true, y_pred)
print cm
np.set_printoptions(precision=2)
cm_normalized = cm.astype('float')/cm.sum(axis=1)[:, np.newaxis]
print cm_normalized
plt.figure(figsize=(12,8), dpi=120)
#set the fontsize of label.
#for label in plt.gca().xaxis.get_ticklabels():
# label.set_fontsize(8)
#text portion
ind_array = np.arange(len(labels))
x, y = np.meshgrid(ind_array, ind_array)
for x_val, y_val in zip(x.flatten(), y.flatten()):
c = cm_normalized[y_val][x_val]
if (c > 0.01):
plt.text(x_val, y_val, "%0.2f" %(c,), color='red', fontsize=7, va='center', ha='center')
#offset the tick
plt.gca().set_xticks(tick_marks, minor=True)
plt.gca().set_yticks(tick_marks, minor=True)
plt.gca().xaxis.set_ticks_position('none')
plt.gca().yaxis.set_ticks_position('none')
plt.grid(True, which='minor', linestyle='-')
plt.gcf().subplots_adjust(bottom=0.15)
plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')
#show confusion matrix
plt.show()
结果如下图所示:
阅读全文
版权声明:本文为博主原创文章,未经博主允许不得转载。
目前您尚未登录,请 登录 或 注册 后进行评论
linchunmian
2017-05-08 2