发布网友 发布时间:2022-04-24 06:06
我来回答
共2个回答
热心网友 时间:2023-10-28 06:26
集合一般是在高中一年级的基础数学章节。关于集合的概念:点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念。初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等。在开始接触集合的概念时...
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素...
1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y= 2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2...
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合...
集合的定义和基本特性 集合是指一组确定、互异、无序的元素。其特性有三个:确定性、互异性、无序性。例如,世界上最高的山这一集合具有确定性;由HAPPY的字母组成的集合{H,A,P,Y}体现了互异性;集合{a,b,c}和{a,c,b}表示同一个集合,展示无序性。集合的表示方式 集合通常使用花括号{}表示...
这里结合具体的图例来讲解:并集的范围是指只要两个集合中任意一个集合占据了数轴的一部分,就属于并集的一部分,比如集合A=(-∞,1],集合B=(3,+∞)的并集在数轴上标示如图所示:计算集合A和集合B的并集,从图上看为阴影部分,为(-∞,1]或者(3,+∞)。
一.知识归纳:1.集合的有关概念。1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互...
高一集合数学知识点有:1、某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。2、通常用大写字母表示集合,用小写字母表示元素。3、集合中元素的数目称为集合的基数,集合A的基数记作...
N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。集合及运算的概念 集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有...
高一数学必修一集合知识总结 一、集合的基本概念 1. 集合的定义:集合是由一个或多个确定的元素所组成的。例如,一个班级的学生集合,整数集合等。元素是组成集合的基本单元。二、集合的表示方法 1. 列举法:当集合元素不多且明确时,可以一一列举出集合的所有元素来表示该集合。例如,集合{1, 2, 3...