关于数学集合的?
发布网友
发布时间:2022-04-24 06:06
我来回答
共2个回答
热心网友
时间:2023-10-06 05:29
容斥原理
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)
如果被计数的事物有a、b两类,那么,a类或b类元素个数= a类元素个数+
b类元素个数—既是a类又是b类的元素个数。
例1
一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?
分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“a类元素”,“语文得满分”称为“b类元素”,“语、数都是满分”称为“既是a类又是b类的元素”,“至少有一门得满分的同学”称为“a类或b类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。)
容斥原理(2)
如果被计数的事物有a、b、c三类,那么,a类或b类或c类元素个数= a类元素个数+
b类元素个数+c类元素个数—既是a类又是b类的元素个数—既是a类又是c类的元素个数—既是b类又是c类的元素个数+既是a类又是b类而且是c类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?
分析:仿照例1的分析,你能先说一说吗?
例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?
分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成a类元素和b类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是a类又是b类的元素”。求的是“a类或b类元素个数”。现在我们还不能直接计算,必须先求出所需条件。1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件。
例4 分母是1001的最简分数一共有多少个?
分析:这一题实际上就是找分子中不能整除1001的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。
例5
某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表:
短跑游泳投掷短跑、游泳短跑、投掷游泳、投掷短路、游泳、投掷
1718156652
求这个班的学生共有多少人?
分析:这个班的学生数,应包括达到优秀和没有达到优秀的。
试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?
例6
在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了。
若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线。在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2。同样再加上将木棍分成15等份的刻度线,也是如此。所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?
德摩根定律-表达形式 形式逻辑中此定律表达形式:
\neg(P\wedge Q)=(\neg P)\vee(\neg Q)
\neg(P\vee Q)=(\neg P)\wedge(\neg Q)
在集合论中:
(A\cap B)^C=A^C\cup B^C
(A\cup B)^C=A^C\cap B^C.
在经典命题逻辑的外延中,此二元性依然有效(即对于任意的逻辑运算符,我们都能找他它的对偶),由于存在于调节否定关系的恒等式中,人们总会引入作为一个算符的德·摩根对偶的另一个算符。这导致了基于传统逻辑的逻辑学的一个重要性质,即否定范式的存在性:任何公式等价于另外一个公式,其中否定仅出现在作用于公式中非逻辑的原子时。否定常型的存在推进了许多应用,例如在数字电路设计中该性质用于操纵逻辑门,以及在形式逻辑中该性质是寻找一个公式的合取范式和析取范式的必要条件;电脑程序员们则用它们将一个类似于IF ... AND (... OR ...) THEN ... 这样的复杂语句转变为其对等形式;它们也同样经常用于初等概率论中的计算。
我们将基于基本命题p, q的任意命题算符P(p, q, ...)的对偶定义为:
\neg \mbox^d(\neg p, \neg q, ...).
该概念可以推广到逻辑量词上,例如全称量词和存在量词互为对偶:
\forall x \, P(x) \equiv \neg \exists x \, \neg P(x),
“对所有x,P(x)皆成立”等价于“不存在x,使P(x)不成立”;
\exists x \, P(x) \equiv \neg \forall x \, \neg P(x).
“存在x,使P(x)成立”等价于“并非对所有x,P(x)都不成立”。
为对德·摩根定律叙述这些量词的二元性,设置一个在其域D中具有少量元素的模型,例如
D = {a, b, c}.
则
\forall x \, P(x) \equiv P(a) \wedge P(b) \wedge P(c)
“对所有x,P(x)成立”等价于“P(a)成立”且“P(b)成立”且“P(c)成立”
以及
\exists x \, P(x) \equiv P(a) \vee P(b) \vee P(c).
“存在x,使P(x)成立”等价于“P(a)成立”或“P(b)成立”或“P(c)成立”
但,应用德·摩根定律,
P(a) \wedge P(b) \wedge P(c) \equiv \neg (\neg P(a) \vee \neg P(b) \vee \neg P(c))
“‘P(a)成立’且‘P(b)成立’且‘P(c)成立’”等价于“非(‘P(a)不成立’或‘P(b)不成立’或‘P(c)不成立’)”
以及
P(a) \vee P(b) \vee P(c) \equiv \neg (\neg P(a) \wedge \neg P(b) \wedge \neg P(c)),
“‘P(a)成立’或‘P(b)成立’或‘P(c)成立’”等价于“非(‘P(a)不成立’且‘P(b)不成立’且‘P(c)不成立’)”
检验模型中量词的二元性。
从而,量词的二元性可进一步延伸到模态逻辑中的方块和菱形算符:
\Box p \equiv \neg \Diamond \neg p,
\Diamond p \equiv \neg \Box \neg p.
在其用于可能性和必然性的真势模态的应用中,亚里士多德注意到该情况,以及在正规模态逻辑的情况中,这些模态算符对量化的关系可借助按关系语义设置模型来理解。
热心网友
时间:2023-10-06 05:29
其实画Venn图是最好的理解方式,两个都能明白。
数学中集合的基本概念有哪些?
4、有理数集:全体有理数的集合.记作Q。5、实数集:全体实数的集合.记作R 6、非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*。
集合在数学中的应用有哪些?
集合在数学中有着广泛的应用,以下是一些常见的应用:1.表示对象或元素:集合可以用来表示一组对象或元素,例如,一组数字、一组人、一组字母等。通过将对象或元素放入集合中,可以方便地进行操作和分析。2.关系和运算:集合之间可以进行各种关系和运算。例如,交集(两个集合的公共元素)、并集(两个集...
数学集合是什么意思?
数学集合的基本概念是一种数学工具,它用来表示一堆具有某种共性的个体。一个集合通常由括号包含着若干个元素组成,这些元素可以是任何数学对象,如数字、线性方程、矩阵、函数等等。我们可以通过集合的简洁定义和运算规则来研究这些元素之间的关系,进而推导出更一般性的数学定理。集合论是数学中的一个分支,...
高中数学集合的概念是什么?
(1)有限集:含有有限个元素的集合。(2)无限集:含有无限个元素的集合。(3)空集:不含任何元素的集合∅。集合的表示方法 1、列举法:把集合中的元素一一列出来,写在大括号内。2、描述法:把集合中的元素的公共属性描述出来,写在大括号内。1、图示法 (1)文氏图:用一条封闭的曲线的...
数学集合的符号有哪些?
5、Q+:正有理数集合。6、Q-:负有理数集合。7、R:实数集合(包括有理数和无理数)。8、R+:正实数集合。9、R-:负实数集合。10、C:复数集合。11、∅ :空集(不含有任何元素的集合)。集合基础知识:集合(简称集)是数学中一个基本概念,由康托尔提出。它是集合论的研究对象,集合...
高一数学中关于集合的知识
集合 1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y= 2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|...
数学中的集合有哪些字母?
数学中的集合字母和意思:N:非负整数集合或自然数集合{0,1,2,3,……} N*或N+:正整数集合{1,2,3,……} Z:整数集合{……,-1,0,1,……} P:质数集合 Q:有理数集合 Q+:正有理数集合 Q-:负有理数集合 R:实数集合 R+:正实数集合 R-:负实数集合 C:复数集合 ∅:...
数学集合的符号有哪些?
数学集合符号都有:N、N+、Z、Q、R、C等。具体介绍如下:1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N。2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)。3、全体整数的集合通常称作整数集,记作Z。4、全体有理数的集合通常简称有理数集,记作Q。5、全体实数...
数学里的集合有哪些?
或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换。
数学中常见的数集有哪些?
全体非负整数的集合通常简称非负整数集,记作N。n在数学中代表了非负整数集,全体非负整数的集合通常称非负整数集或自然数集,非负整数集包含0、1、2、3等自然数,数学上用字母“n”来表示,非负整数集包括正整数和零,是一个可列集。在非负整数集中,有一个最小的自然数0,在N中除去零之后...