发布网友 发布时间:2022-04-24 06:04
共4个回答
懂视网 时间:2022-08-15 19:02
1、首先去分母:
做法:不等式两边同乘分母的最小公倍数。
注意:①不要漏乘不含分母的项。
②分子是一个代数式时,分数线有括号的作用,去分母后应作为一个整体加上括号。
③不等式两边都乘同一个负数时,不等号方向要改变。
2、然后去括号:
做法:先去小括号,再去中括号,最后去大括号。
注意:①一个数乘多项式时,不要漏乘括号里的项。
②不要出现符号的错误。
3、最后移项:
做法:把含有未知数的项移到不等式的一边,其他项都移到不等式的另一边。
注意:移项时该项要变号、不要漏项。
热心网友 时间:2023-07-31 09:18
不等式就是用不等式符号把一个式子连接起来的算式;不等式和等式主要的区别就是他们的符号不同,一个是“=”,一个是“>、<、≥、≤”。但解不等式是完全可以用等式的性质来解。下面我就以一道例题来讲一下解不等式的标准步骤。
第一步、如果是应用题就要先理清楚思路,然后列出不等式,最后再解不等式;如果是解不等式的计算题,就直接写“解”,开始写出计算过程。
第二步、计算过程就是利用等式的性质,把不等式的等价式子写出来,如下图所示,题目中的绝对值的地方就需要注意一下,这是一个易错点。
第三步、计算不等式的等价式,这就是一个小问题了,完全按照等式的性质来计算即可,只是注意不要把不等式的符号写成等式的符号了,最后写出原不等式的解集即可。
扩展资料:
1、如果x>y,则y<x;如果y<x,则x>y(对称性)
2、如果x>y,y>z;则x>z(传递性)
3、如果x>y,而z为任意实数或整式,则x+z>y+z;(同向不等式可加性)
4、如果x>y,z>0,则xz>yz;如果x>y,z<0,则xz<yz;(乘法原则)
5、如果x>y,m>n,则x+m>y+n;(充分不必要条件)
6、如果x>y>0,m>n>0,则xm>yn;
7、如果x>y>0,则x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
8、不等式的基本性质的另一种表达方式有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性。
参考资料来源:百度百科-解不等式
热心网友 时间:2023-07-31 09:18
解不等式利用的法则,类似于解方程热心网友 时间:2023-07-31 09:19
解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。由两条不等式组成的不等式组,以下是解不等式组的方法:
1、若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”。
2、若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”。
3、若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中”。
4、若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”。
扩展资料:
基本不等式中常用公式:
(1)√来((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等源号成立)
(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)
(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)
(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)
(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)
参考资料来源:百度百科-基本不等式
热心网友 时间:2023-07-31 09:19
解不等式利用的法则,类似于解方程