发布网友 发布时间:2022-04-25 14:31
共5个回答
热心网友 时间:2023-05-05 08:16
自相关和偏自相关图一般来说是判断拖尾阶尾和选择ARIMA模型的基本方法,但这种方法依然比较粗糙。
有些时候会出现自相关和偏自相关均截尾的现象,这是就需要用信息准则来判断了。
通过图片来做一个示例:
AR模型:自相关系数拖尾,偏自相关系数截尾,
MA模型:自相关系数截尾,偏自相关函数拖尾。
ARMA模型:自相关函数和偏自相关函数均拖尾。
根据输出结果,自相关函数图拖尾,偏自相关函数图截尾,且n从2或3开始控制在置信区间之内,因而可判定为AR(2)模型或者AR(3)模型。
自相关和偏自相关都是拖尾,数据到后面还有增大的情况,没有明显的收敛趋势。
自相关7阶拖尾(n从7开始缩至置信区间),偏自相关2阶拖尾。
扩展资料:
自相关的后果:
线性相关模型的随机误差项存在自相关的情况下,用OLS(普通最小二乘法)进行参数估计,会造成影响。
从高斯-马尔可夫定理的证明过程中可以看出,只有在同方差和非自相关性的条件下,OLS估计才具有最小方差性。当模型存在自相关性时,OLS估计仍然是无偏估计,但不再具有有效性。
这与存在异方差性时的情况一样,说明存在其他的参数估计方法,其估计误差小于OLS估计的误差;也就是说,对于存在自相关性的模型,应该改用其他方法估计模型中的参数。
1、自相关不影响OLS估计量的线性和无偏性,但使之失去有效性。
2、自相关的系数估计量将有相当大的方差。
3、自相关系数的T检验不显著。
4、模型的预测功能失效。
热心网友 时间:2023-05-05 08:16
在sas软件中,我们可以通过得到的自相关函数图和偏相关函数图来判断。
如果样本自相关系数和样本偏自相关系数在最初的阶明显大于2倍标准差,而后几乎95%的系数都落在2倍标准差的范围内,且非零系数衰减为小值波动的过程非常突然,通常视为k阶截尾;
如果有超过5%的样本相关系数大于2倍标准差,或者非零系数衰减为小值波动的过程比较缓慢或连续,通常视为拖尾。
相关示例
AR模型:自相关系数拖尾,偏自相关系数截尾;
MA模型:自相关系数截尾,偏自相关函数拖尾;
ARMA模型:自相关函数和偏自相关函数均拖尾。
根据统计图形和数据判断
根据输出结果,自相关函数图拖尾,偏自相关函数图截尾,且n从2或3开始控制在置信区间之内,因而可判定为AR(2)模型或者AR(3)模型。
这张图可以看到,很明显的自相关和偏自相关都是拖尾,因为数据到后面还有增大的情况,没有明显的收敛趋势。
如果图片成这样,估计十有*是一个ARMA模型了。自相关7阶拖尾(n从7开始缩至置信区间),偏自相关2阶拖尾。
扩展资料:
截尾自相关和偏自相关图一般来说是判断拖尾阶尾和选择ARIMA模型的基本方法,但这种方法依然比较粗糙。有些时候会出现自相关和偏自相关均截尾的现象,这时就需要用信息准则来判断了。p值很大,不拒绝原假设,序列是平稳的。
截尾及拖尾在统计学时间序列中的基本应用
根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏自相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型。
若平稳序列的偏自相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏自相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。同时根据信息标准AIC和SIC来协助判断阶数。
参考资料来源:百度百科-截尾
热心网友 时间:2023-05-05 08:17
一般来说,自相关和部分自相关是判断尾随阶尾和选择ARIMA模型的基本方法,但这种方法还比较粗糙。
有时自相关和部分自相关被截断,需要用信息准则来判断。
以图片为例:
AR模型:自相关系数拖尾,部分自相关系数拖尾,
MA模型:自相关系数截断,部分自相关函数尾。
ARMA模型:对自相关函数和部分自相关函数进行尾化。
根据输出结果,自相关函数图为尾,部分自相关函数图为尾,N控制在2或3的置信区间内,可以确定为AR(2)模型或AR(3)模型。
自相关和部分自相关都是尾的,且数据有增加的趋势,没有明显的收敛趋势。
自相关阶7拖尾(n从7到置信区间),部分自相关阶2拖尾。
扩展资料:
截尾自相关和偏自相关图一般来说是判断拖尾阶尾和选择ARIMA模型的基本方法,但这种方法依然比较粗糙。有些时候会出现自相关和偏自相关均截尾的现象,这时就需要用信息准则来判断了。p值很大,不拒绝原假设,序列是平稳的。
截尾及拖尾在统计学时间序列中的基本应用
根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏自相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型。
若平稳序列的偏自相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏自相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。同时根据信息标准AIC和SIC来协助判断阶数。
参考资料来源:百度百科–截尾
热心网友 时间:2023-05-05 08:17
在sas软件中,我们可以通过得到的自相关函数图和偏相关函数图来判断。热心网友 时间:2023-05-05 08:18
在sas软件中,我们可以通过得到的自相关函数图和偏相关函数图来判断