发布网友 发布时间:2023-08-15 04:50
共1个回答
热心网友 时间:2024-02-04 09:00
证明一:证明:连接CO并延长,交圆O于点M,连接BM∵CM是直径∴∠cbm=90°∴∠MCB+∠M=90°∵CD相切与圆O于点C∴∠mcd=90°=∠MCB+∠M。
又∵∠mcd=∠MCB+∠bcd∴∠MCB+∠bcd=∠MCB+∠M∴∠bcd=∠M∵∠M=∠A∴∠BCD=∠A。
证明二;如图,已知:直线PT切圆O于点C,BC、AC为圆O的弦。
求证:∠TCB=1/2∠BOC=∠BAC
证明:设圆心为O,连接OC,OB,。
∵∠OCB=∠OBC
∴∠OCB=1/2*(180°-∠BOC)
又∵∠BOC=2∠BAC
∴∠OCB=90°-∠BAC
∴∠BAC=90°-∠OCB
又∵∠TCB=90°-∠OCB
∴∠TCB=1/2∠BOC=∠BAC
综上所述:∠TCB=1/2∠BOC=∠BAC
扩展资料
弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数。
弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。其大小等于它所夹的弧所对的圆周角。其顶点在圆上。弦切角一条边与圆周相交,另一条边与圆相切,切点在圆周上。
参考资料:百度百科弦切角定理