发布网友 发布时间:2023-08-22 01:17
共1个回答
热心网友 时间:2024-11-23 23:00
柯西不等式基本题型分别是:
1、二维形式:
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
2、三角形式:
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
3、向量形式:
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)
等号成立条件:β为零向量,或α=λβ(λ∈R)。
4、一般形式:
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
柯西不等式的一般形式
(a^2+b^2)(c^2+d^2)≥(ac+bd)^2(当且仅当a:c=b:d时取等号)。
在数学中,柯西不等式(Cauchy-Schwarz inequality)在线性代数、数学分析、概率论等领域中都是非常有用的不等式,它被认为是数学中最重要的不等式之一。