求函数y=√3sin2x+cos2x的最大值与最小值,并指出相应的x的取值范围.
发布网友
发布时间:2023-08-22 20:41
我来回答
共1个回答
热心网友
时间:2024-02-02 07:11
y=√3sin2x+cos2x
=2(√3/2·sin2x+1/2·cos2x)
=2[sin2xcos(π/6)+cos2xsin(π/6)]
=2sin(2x+π/6).
sin(2x+π/6)=1,
即2x+π/6=2kπ+π/2
→x=kπ+π/6时,
所求最大值为:y|max=2.
sin(2x+π/6)=-1,
即2x+π/6=2kπ+3π/2
→x=kπ+2π/3时,
所求最小值为:y|min=-2.