债券凸性、久期和到期收益率、息票率、市场利率的相关关系
发布网友
发布时间:2022-04-25 14:45
我来回答
共3个回答
热心网友
时间:2023-10-09 18:52
债券价格P是未来一系列现金流的贴现,久期D就是以折现现金流为权重的未来现金流的平均回流时间。债券中一个最重要的概念就是久期,主要是为了定量的度量利率风险,但麦考利久期不易度量,所以引入了一个修正久期D/(1+y),而凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的更精确的测量。
债券价格与市场利率是呈反比。因为市场利率上升,则债券潜在购买者就要求与市场利率相一致的到期收益率,那么就需债券价格下降,即到期收益率向市场利率看齐。
债券收益率也当然是和债券价格呈反比的,但这种反比关系是非线性的,债券的凸性能够准确描述债券价格与收益率之间非线性的反比关系,而债券的久期将反比关系视为线性的,只是一个近似的公式。
将债券价格P对贴现率y(一般y为到期收益率)进行一阶求导,就可得到dP/dy=-D/(1+y) *P
称D/(1+y)为修正久期
债券期限越长,久期也就越长,息票率越高,那么前期收到的现金流就越多,回收期就缩短,即息票率越高,久期越小。
凸性随久期的增加而增加。若收益率、久期不变,票面利率越大,凸性越大。利率下降时,凸性增加。
热心网友
时间:2023-10-09 18:53
其实,我觉得楼主太看重久期和凸性这两个概念本身了。从本质上讲,这两个概念都是由债券的价格--收益率 函数F(r)求导数而来。久期是该函数的一阶导数,表示出债券的价格在市场利率变化时的变话程度,谈到久期是往往都会注明是某一时刻,某一收益率水平上的久期。即,久期本身也是在变化的,那么对这种变化本身进行衡量即衡量第n-1次变化和第n次变化相差多少就再对一阶导数求导得到凸性。
相比楼主关于久期和凸性间关系的问题,我倒觉得应该去了解当市场利率变化时久期和凸性是怎样和债券价格形成关系的。这样更实际些。
那么,当市场利率变化 delta i , 将债券价格的变化记做 delta p,现价记做p,修正久期记做D*, 凸性记做C. 有:
delta p=-D*×p×delat i+1/2×C×p×delta i×delta i
热心网友
时间:2023-10-09 18:53
久期是债券价格对到期收益率的一阶导、凸性是二阶导