发布网友 发布时间:2023-09-23 02:38
共1个回答
热心网友 时间:2024-12-04 06:49
实对称矩阵的属于不同特征值的特征向量正交,由此可设另一个特征值的特征向量为 (x1,x2,...)^T, 它与已知特征向量正交, 求出基础解系即可。
一般情况下, 解出的基础解系所含向量的个数必须是另一个特征值的重数k,因为实对称矩阵k重特征值必有k个线性无关的特征向量,而与已知向量正交的线性无关的向量又恰好有k个,这样才知道基础解系中向量都是另一个特征值的特征向量。
扩展资料:
对称矩阵的基本性质
1.对于任何方形矩阵X,X+XT是对称矩阵。
2.A为方形矩阵是A为对称矩阵的必要条件。
3.对角矩阵都是对称矩阵。
4.两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。
5.任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:
6.每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。
7.若对称矩阵A的每个元素均为实数,A是Hermite矩阵。
8.一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。
9.如果X是对称矩阵,那么对于任意的矩阵A,AXAT也是对称矩阵。
10.n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。
参考资料来源:百度百科--对称矩阵