详解一下 正弦定理的多解 现象
发布网友
发布时间:2023-09-14 13:58
我来回答
共3个回答
热心网友
时间:2024-11-14 17:59
就是因为一个诱导公式
sin(π-A)=sinA
因为三角形内角肯定小于180度
故由正弦定理解出的角可能是A,也可能是π-A
只要满足A的两个值与题中给的另一角度之和小于π
该题就有多解
或者这样看
有边a和角B可作出直角三角形A'BC
若边b大于直角三角形边A'C的长度
则边b即可以在直角边左面,也可以在直角边右面
具体图参照全等三角形SSA无法证明全等的图
如a=3,b=2,B=π/6
则sinA=3/4,A=48.6°或131.4°
因A的两个值都满足A+B<π
故该题有2个解
热心网友
时间:2024-11-14 18:00
a小于b sin A 无解
a小于等于b 无解
a=b sin A 一解
a大于b 一解
其余的 两解
(只有无解,一解,两解三种情况)
热心网友
时间:2024-11-14 18:00
正弦函数是周期函数,一个Y的取值可以有无数个X值与之相对应(定义域为R)