各种进制在实际中有什么意义?
发布网友
发布时间:2022-04-25 21:37
我来回答
共1个回答
热心网友
时间:2022-06-17 17:51
数制是人们利用符号进行计数的科学方法。数制有很多种,在计算机中常用的数制有:十进制,二进制和十六进制。
数制也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法。计算机是信息处理的工具,任何信息必须转换成二进制形式数据后才能由计算机进行处理,存储和传输。 [编辑本段]十进制数 人们通常使用的是十进制。它的特点有两个:有0,1,2….9十个基本数字组成,十进制数运算是按“逢十进一”的规则进行的.
在计算机中,除了十进制数外,经常使用的数制还有二进制数和十六进制数.在运算中它们分别遵循的是逢二进一和逢十六进一的法则. [编辑本段]二进制数 二进制数有两个特点:它由两个基本数字0,1组成,二进制数运算规律是逢二进一。
为区别于其它进制数,二进制数的书写通常在数的右下方注上基数2,或加后面加B表示。
例如:二进制数10110011可以写成(10110011)2,或写成10110011B,对于十进制数可以不加注.计算机中的数据均采用二进制数表示,这是因为二进制数具有以下特点:
1) 二进制数中只有两个字符0和1,表示具有两个不同稳定状态的元器件。例如,电路中有,无电流,有电流用1表示,无电流用0表示。类似的还比如电路中电压的高,低,晶体管的导通和截止等。
2) 二进制数运算简单,大大简化了计算中运算部件的结构。
二进制数的加法和乘法运算如下:
0+0=0 0+1=1+0=1 1+1=10
0×0=0 0×1=1×0=0 1×1=1 [编辑本段]八进制(Octal) 由于二进制数据的基R较小,所以二进制数据的书写和阅读不方便,为此,在小型机中引入了八进制。八进制的基R=8=2^3,有数码0、1、2、3、4、5、6、7,并且每个数码正好对应三位二进制数,所以八进制能很好地反映二进制。 例如:二进制数据 ( 11 101 010 . 010 110 100 )2 对应 八进制数据 ( 3 5 2 . 2 6 4 )8 [编辑本段]十六进制数 由于二进制数在使用中位数太长,不容易记忆,所以又提出了十六进制数
十六进制数有两个基本特点:它由十六个字符0~9以及A,B,C,D,E,F组成(它们分别表示十进制数0~15),十六进制数运算规律是逢十六进一,即基R=16=2^4,通常在表示时用尾部标志H或下标16以示区别。
例如:十六进制数4AC8可写成(4AC8)16,或写成4AC8H。 [编辑本段]数的位权概念 对于形式化的进制表示,我们可以从0开始,对数字的各个数位进行编号,即个位起往左依次为编号0,1,2,……;对称的,从小数点后的数位则是-1,-2,……
进行进制转换时,我们不妨设源进制(转换前所用进制)的基为R1,目标进制(转换后所用进制)的基为R2,原数值的表示按数位为AnA(n-1)……A2A1A0.A-1A-2……,R1在R2中的表示为R,则有(AnA(n-1)……A2A1A0.A-1A-2……)R1=(An*R^n+A(n-1)*R^(n-1)+……+A2*R^2+A1*R^1+A0*R^0+A-1*R^(-1)+A-2*R^(-2))R2
(由于此处不可选择字体,说明如下:An,A2,A-1等符号中,n,2,-1等均应改为下标,而上标的幂次均用^作为前缀)
举例:
一个十进制数110,其中百位上的1表示1个10^2,既100,十位的1表示1个10^1,即10,个位的0表示0个100,即0。
一个二进制数110,其中高位的1表示1个2^2,即4,低位的1表示1个2^1,即2,最低位的0表示0个2^0,即0。
一个十六进制数110,其中高位的1表示1个16^2,即256,低位的1表示1个16^1,即16,最低位的0表示0个16^0,即0。
可见,在数制中,各位数字所表示值的大小不仅与该数字本身的大小有关,还与该数字所在的位置有关,我们称这关系为数的位权。
十进制数的位权是以10为底的幂,二进制数的位权是以2为底的幂,十六进制数的位权是以16为底的幂。数位由高向低,以降幂的方式排列。