利用常数变易法求解方程y''+y=1/sinx.
发布网友
发布时间:2023-09-09 05:27
我来回答
共1个回答
热心网友
时间:2023-11-12 06:51
特征方程r^2+1=0
得到r1,2=±i
所以设通解y=u(x)cosx+v(x)sinx
所以y'=u'cosx+v'sinx-usinx+vcosx
令u'cosx+v'sinx=0--------------------------------------------------------1
所以y'=-usinx+vcosx
y''=-u'sinx+v'cosx-ucosx-vsinx
带入y''+y=1/sinx得到
-u'sinx+v'cosx=1/sinx----------------------------------------------------2
1,2两式子联立,解出u',v',进而解出u(x),v(x)
然后通解为
y=u(x)cosx+v(x)sinx=c1cosx+c2sinx-xcosx+sinx(lnsinx)