问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于点H.若正方形的边长

发布网友 发布时间:2022-04-25 22:58

我来回答

5个回答

热心网友 时间:2023-10-16 14:00

答案:

解题思路:

①求DH的最小值,我们发现正方形的顶点D是固定点,H是动点,
我们需要研究H的位置是否具有关键性质,这个时候需要进行边角关系的研究;
②由题干条件我们知道△EAB≌△FDC,则∠ABE=∠DCF,而△DGA≌DGC(SAS),
∴∠DAG=∠DCG,
∴∠DAG=∠ABE,
∵∠DAG+∠HAB=90°,
∴∠ABE+∠HAB=90°,
∴AH⊥HB,
这个时候我们得到了垂直关系,知道△HAB是直角三角形;
③结合最值问题中常用的三个定理,我们取AB中点M,连接HM,DM,如图所示:

此时DH≥DM-HM,且这三点共线时,取等号,此时DH=DM-HM,
易求得HM=1,,
∴,至此得出DH的最小值为

热心网友 时间:2023-10-16 14:01

解:在正方形ABCD中,∵AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,
在△ABE和△DCF中,由
AB=CD
∠BAD=∠CDA
AE=DF
 可得△ABE≌△DCF(SAS),
∴∠1=∠2.
同理可证△ADG≌△CDG(SAS),
∴∠2=∠3,∴∠1=∠3.
∵∠BAH+∠3=∠BAD=90°,
∴∠1+∠BAH=90°,
∴∠AHB=180°-90°=90°.
取AB的中点O,连接OH、OD,
则OH=AO=
1
2
AB=1,在Rt△AOD中,OD=
AO2+AD2
=
1+4
=
5

根据三角形的三边关系,OH+DH>OD,
∴当O、D、H三点共线时,DH的长度最小,
DH的最小值为OD-OH=
5
-1.
故答案为:
5
-1.

热心网友 时间:2023-10-16 14:01

这道题的关键在于能够判断出 AH始终垂直于BE. 也就是说角AHB永远是直角. H是动点. 

那么, 对于一个动点H来讲,  什么情况下角AHB一直是直角呢? 显然, 根据圆的知识, 这个H动点的轨迹是以AB为直径的圆上(直径对的圆周角永远是直角). 

明白了H点的轨迹是个圆以后, 就非常好理解, 为什么只有在H点在D和圆心O的连线上的时候, DH 出现了最小值. 


   网上的很多回答直接取AB的中点,然后连线, 说明解题过程. 这种解法的一个重要的缺陷是, 这个取AB中点进行连线的想法是从何而来? 没有任何逻辑说明为什么会有这么个奇妙的想法.  就像魔术师突然从帽子里变出个兔子来.


【一些补充】

【做完后的回顾】 做完一道题后,总是要回顾一下,打扫战场。

这道题涉及到了动点的问题。动点-->动点的轨迹问题--- 平面几何中动点的轨迹无外乎直线,圆,椭圆,抛物线等。它会是什么呢? ---- 观察图形。好像暂时看不出来。

没关系。试试看。照题目条件画画看,看动点的几个不同的位置。---猜想,可能是圆。  圆--- 那么圆的圆心在哪儿? 回到题目去,观察图形,角AHB好像是直角,猜想对吗?试试看,看起来像。

如果是证明题的话,如何证明?
条件中有线段相等,正方形,直角,。。。在这种条件下,常见的做法有哪些?找全等。全等三角形有吗?好像有。往题目给出的条件靠拢。  做题中间,可以停下来问问自己, 我走在正确的方向上吗? 好像是,为什么,因为题目的不少条件我能用上,好继续走下去。。。

除了求出最小值外,还有没有其他的收获呢? 比如说,看看H点和A点重合或者B点重合会是什么结果? 可能重合吗?这个思维就是特殊化的思维。 

这道题有没有其他的解法呢?等等。。。也许刚开始就应该找特殊化的例子,比如E.F点重合了呢,就是AD 的中点,这下应该容易多了吧,嗯,重合的时候,比较容易看出角AHB 是个直角。 有点用。 
进一步思索,是不是这种思维方法有普遍性?也许以后碰到其他问题,可以尝试着先特殊化一下,特殊化是一个属于普遍化集合中的一个子集合,如果大的集合有某种规律的话,小的子集合必然也有。。。。

这儿只是举一些例子。做每一道题,都有要这样的思维过程,这样的话,就可以深刻

理解题目,锻炼自己的思维,举一反三,避免陷入题海战术。 

热心网友 时间:2023-10-16 14:02

建议给“最快回答”采纳,他的思路很好!
解:在正方形ABCD中,∵AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,
在△ABE和△DCF中,由

AB=CD
∠BAD=∠CDA
AE=DF

可得△ABE≌△DCF(SAS),
∴∠1=∠2.
同理可证△ADG≌△CDG(SAS),
∴∠2=∠3,∴∠1=∠3.
∵∠BAH+∠3=∠BAD=90°,
∴∠1+∠BAH=90°,
∴∠AHB=180°-90°=90°.
取AB的中点O,连接OH、OD,
则OH=AO=
1
2
AB=1,在Rt△AOD中,OD=
AO2+AD2
=
1+4
=
5

根据三角形的三边关系,OH+DH>OD,
∴当O、D、H三点共线时,DH的长度最小,
DH的最小值为OD-OH=
5
-1.
故答案为:
5
-1.

热心网友 时间:2023-10-16 14:03

==

客官您好!
订单933846850691053688给您上菜啦:
卡密0df60109ae5813fa7e565fbb39b9ed81
把下面的网址复制到其它手机,或者电脑浏览器打开(别用vx打开,要用浏览器打开):

https://ihimao.com/login
输入卡密会出现二为码,拿需要清理的号对着屏幕去扫,登录上去后看文件助手推送的消息
我是机器人回答不了你的问题
如需人工帮助请回复【人工】
满意再来光临哈!

==
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
哪个牌子复印机好 复印店用什么型号的复印机好 开复印店需要什么设备 家用打印复印机哪个好 如何分辨鞋底是不是空心格子底? Ubuntu10.04下安装Oracle11g 超市监控多少钱 超市防盗器要多少钱 超市防盗系统多少钱 智能存放柜管理系统 48小时核酸检测结果在哪里查询-48小时核酸检测怎么看结果 什么食物混在一起吃会拉肚子或对身体不好的? 已知:如图,在平行四边形ABCD中,BD交于点O,分别交CB,AD的延长线于点E,F。求证AE=CF 紧急! 如何控制企业的财务风险 现金流风险 生活中那些食物一起吃会引起腹泻啊? abcd是块长方形砖,e是cd上的点,要块平行四边形aecf的砖,用尺规作图:过点c做cf平行ae,射线cf交ab于f 什么东西和什么东西一起吃会拉肚子 风险控制在资金安全中是什么地位? 什么东西和什么东西吃了会拉肚子 欧姆龙PLC内存区的A ,D ,E ,EO ,H ,IO ,TK ,W ,C ,T ,CF ,各表示什么元件 什么食物跟什么食物一起吃会拉肚子 当前运营风险管控体系的构建和特点是什么意思 0x000000ea(0x82cf7020,0x82e4dd80,0xf8c2bcb4,0x0000001) 我想知道哪些食物互相搭配吃能拉肚子? 企业资金管理如何高效实施 STOP 0x00000050(0xFFFFFFFE ,0x0000001,0x8052CF8C,0x0000000) 如何规避资金风险?有什么防范措施? 哪些食物吃了容易拉肚子 开机蓝屏0x0000007e(0xc0000005,0xf7706756,0xf79e142c,0cf79e1128) 什么东西在一起吃拉肚子 如何进行资金管理和风险管理 什么东西搭配吃拉肚子 哪些东西混在一起吃会拉肚子 日常生活中吃什么东西可以拉肚子 流量月包5G是每天5G还是什么意思? 天天5g域名改为多少了 是7天共5G吗还是每天? 5G网络,每天50G国内流量够不够用? 工信部表示已实现所有地市5G覆盖,为何有的人还是不愿意用5G呢? 为什么之前很火的的 5G 技术如今似乎关注度降低了? oppo浏览器备份怎么恢复 流量一个月5G,平均每天多少 要让人觉得5G有用,就得先开发出5G应用,对大众产生吸引力吗? 银行利率调整后是多少? 银行调整后的利息是多少 目前银行利息调整都有哪些形式? 目前银行房贷的利率是多少,利率调整以后是次月就有变化吗, 南京银行调整后银行存款利率是多少 我刚看到的银行利率已调整过了,新的利率是多少 2010年中国银行存款利率调整了几次?调整时利率分别是多少? 重汽豪瀚暖风机只有高速档,而且控制面板不管用怎么会事?