问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

RDD,DataFrame和DataSet的区别

发布网友 发布时间:2022-03-24 14:25

我来回答

2个回答

懂视网 时间:2022-03-24 18:47

rdd的特点如下:

  1、RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集。

  2、RDD在抽象上来说是一种元素集合,包含了数据。它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作。

  3、RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建;有时也可以通过应用程序中的集合来创建。

  4、RDD最重要的特性就是,提供了容错性,可以自动从节点失败中恢复过来。即如果某个节点上的RDD partition,因为节点故障,导致数据丢了,那么RDD会自动通过自己的数据来源重新计算该partition。这一切对使用者是透明的。

  5、RDD的数据默认情况下存放在内存中的,但是在内存资源不足时,Spark会自动将RDD数据写入磁盘。

  

热心网友 时间:2022-03-24 15:55

RDD和DataFrame

RDD-DataFrame

上图直观地体现了DataFrame和RDD的区别。左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化,比如filter下推、裁剪等。

提升执行效率

RDD API是函数式的,强调不变性,在大部分场景下倾向于创建新对象而不是修改老对象。这一特点虽然带来了干净整洁的API,却也使得Spark应用程序在运行期倾向于创建大量临时对象,对GC造成压力。在现有RDD API的基础之上,我们固然可以利用mapPartitions方法来重载RDD单个分片内的数据创建方式,用复用可变对象的方式来减小对象分配和GC的开销,但这牺牲了代码的可读性,而且要求开发者对Spark运行时机制有一定的了解,门槛较高。另一方面,Spark SQL在框架内部已经在各种可能的情况下尽量重用对象,这样做虽然在内部会打破了不变性,但在将数据返回给用户时,还会重新转为不可变数据。利用 DataFrame API进行开发,可以免费地享受到这些优化效果。

减少数据读取

分析大数据,最快的方法就是 ——忽略它。这里的“忽略”并不是熟视无睹,而是根据查询条件进行恰当的剪枝。

上文讨论分区表时提到的分区剪 枝便是其中一种——当查询的过滤条件中涉及到分区列时,我们可以根据查询条件剪掉肯定不包含目标数据的分区目录,从而减少IO。

对于一些“智能”数据格 式,Spark SQL还可以根据数据文件中附带的统计信息来进行剪枝。简单来说,在这类数据格式中,数据是分段保存的,每段数据都带有最大值、最小值、null值数量等 一些基本的统计信息。当统计信息表名某一数据段肯定不包括符合查询条件的目标数据时,该数据段就可以直接跳过(例如某整数列a某段的最大值为100,而查询条件要求a > 200)。

此外,Spark SQL也可以充分利用RCFile、ORC、Parquet等列式存储格式的优势,仅扫描查询真正涉及的列,忽略其余列的数据。

执行优化

人口数据分析示例

为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们join之后又做了一次filter操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为join是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将filter下推到 join下方,先对DataFrame进行过滤,再join过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

得到的优化执行计划在转换成物 理执行计划的过程中,还可以根据具体的数据源的特性将过滤条件下推至数据源内。最右侧的物理执行计划中Filter之所以消失不见,就是因为溶入了用于执行最终的读取操作的表扫描节点内。

对于普通开发者而言,查询优化 器的意义在于,即便是经验并不丰富的程序员写出的次优的查询,也可以被尽量转换为高效的形式予以执行。

RDD和DataSet

DataSet以Catalyst逻辑执行计划表示,并且数据以编码的二进制形式被存储,不需要反序列化就可以执行sorting、shuffle等操作。

DataSet创立需要一个显式的Encoder,把对象序列化为二进制,可以把对象的scheme映射为Spark
SQl类型,然而RDD依赖于运行时反射机制。

通过上面两点,DataSet的性能比RDD的要好很多,可以参见[3]

DataFrame和DataSet

Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。因此具有如下三个特点:

DataSet可以在编译时检查类型

并且是面向对象的编程接口。用wordcount举例:

//DataFrame

// Load a text file and interpret each line as a java.lang.String
val ds = sqlContext.read.text("/home/spark/1.6/lines").as[String]
val result = ds
.flatMap(_.split(" ")) // Split on whitespace
.filter(_ != "") // Filter empty words
.toDF() // Convert to DataFrame to perform aggregation / sorting
.groupBy($"value") // Count number of occurences of each word
.agg(count("*") as "numOccurances")
.orderBy($"numOccurances" desc) // Show most common words first
//DataSet,完全使用scala编程,不要切换到DataFrame

val wordCount =
ds.flatMap(_.split(" "))
.filter(_ != "")
.groupBy(_.toLowerCase()) // Instead of grouping on a column expression (i.e. $"value") we pass a lambda function
.count()

后面版本DataFrame会继承DataSet,DataFrame是面向Spark SQL的接口。

DataFrame和DataSet可以相互转化,df.as[ElementType]这样可以把DataFrame转化为DataSet,ds.toDF()这样可以把DataSet转化为DataFrame。

文/jacksu在简书(简书作者)
原文链接:http://www.jianshu.com/p/c0181667daa0
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
为什么来大姨妈胸会胀 少儿学什么舞蹈 青年学什么舞蹈好 成年人学什么舞蹈 福州企业最低工资标准 2013年厦门的底薪是多少 生产要素的需求有哪些性质 生产要素的需求有何特点? 什么是生产要素需求 微观经济学要素需求什么是条件要素需求?它和要素需求有什么不同?_百度... 谈谈RDD,DataFrame,Dataset的区别和各自的优势 为什么vivo手机没有小V vivo小v在哪里打开 oppo r9s怎么部分截屏 oppo r9s 截图功能怎么开启 oppor9s怎么截屏,截屏后怎么发 oppor9s怎么截长屏? oppo r9s如何超级截屏? OPPOR9s这么截屏? OPPOR9s截图怎么截 oppor9s怎么长截屏 oppo r9s怎么截图 “OPPO R9S”手机怎么截图? OPPOR9s如何截图 OPPO R9s手机怎么截屏? oppor9s怎么截屏 oppor9s怎么快速截屏 oppor9s的截图功能在哪里 oppo r9s怎么截屏 乐视手机怎么备份数据 如何理解spark中RDD和DataFrame的结构 如何学习Spark大数据 Storm Spark Hadoop 这三个流行并行计算框架有什么不同 请简要描述一下hadoop,spark,mpi三种计算框架的特点以及分别适用于什么样的场景 如何把Spark RDD中的内容按行打印出来 hadoop,storm和spark的区别,比较 数据集的最基本组成单位是指rdd的什么属性 spark SQL和hive到底什么关系 Spark RDD,DataFrame和DataSet的区别 大数据技术是学什么的? 大数据专业成热门,该如何转行做大数据分析师 肝硬化晚期救治疗方 rc.conf和rc.local的区别 写秋天的特点的作文 早期的肝硬化可以逆转吗 手机屏幕显示原理是什么? 太阳能电池板可以直接接在蓄电池上给蓄电池充电吗? 太阳能板可以直接给电瓶充电吗 太阳能电池板能给汽车电瓶充电吗?我只有一个太阳能面板,可以直接给电瓶冲吗?需要什么配件吗?? 太阳能板可以直接接电瓶吗?