发布网友 发布时间:2022-04-24 16:33
共1个回答
热心网友 时间:2022-05-13 03:33
体温调节的基本中枢在下丘脑。切除下丘脑以上的前脑的动物即“下丘脑动物”,仍能保持接近正常的体温调节功能。而切除中脑以上的全部前脑(包括下丘脑)的动物则不能保持体温的相对稳定。用局部加热或电刺激猫的下丘脑的前部,可引起热喘、血管舒张和足跖发汗等散热效应。破坏该区后,猫在热环境中的散热反应能力丧失,但对冷环境的反应(寒颤、竖毛、血管收缩、代谢率升高等)仍存在。破坏下丘脑后部内侧区的效果,则正相反,对冷环境的反应丧失。传统生理学据此认为,在下丘脑前部存在着散热中枢,而下丘脑后部则存在着产热中枢。两个中枢之间有着交互抑制的关系,从而保持了体温的相对稳定。
在下丘脑前部还存在着发汗中枢。下丘脑后部内侧区存在着寒颤中枢,它对血液温度变化并不敏感,但对来自皮肤冷觉感受器的传入信息比较敏感。电刺激下丘脑前部(散热中枢)可以抑制寒颤;冷却视前区-下丘脑前部则可以引起寒颤。这表明下丘脑前部有冲动输入至下丘脑后部。
下丘脑与体温的行为调节亦有关。对鼠猴进行训练,使它每次从冷室返回时能自行拧开热气开关取暖。如此时突然将其视前区-下丘脑前部的温度由36℃提高到42℃,它就立即关闭热气而打开冷气。这表明体温的行为调节受下丘脑的控制,而体温调节中枢对体内外温度变化的反应,则取决于大脑对来自外周和中枢的多种温度觉信息整合的结果。 该假说认为在下丘脑的前部存在着热敏神经元和冷敏神经元。这两种温度感受神经元的活动共同作用的结果,决定了体温调节的调定点。体温偏离这一调定点水平时,可通过反馈系统的调节,使体温回到调定点水平。调定点是可以变动的。发热就可能是由于细菌内毒素等致热原使视前区-下丘脑前部的热敏神经元阈值升高、调定点水平上移所致。致热原的作用可能是通过前列腺素E这一中间环节,而阿斯匹林能够抑制前列腺素的合成,因而起退热的作用。体温的一些节律性变化,许多学者亦用调定点的节律性变动来解释。
有些学者认为视前区-下丘脑前部温度感受神经元的活动决定了调定点,而下丘脑后部则为传出神经元发出的部位。另一些学者认为视前区-下丘脑前部感受脑温的变化,而下丘脑后部则对来自皮肤的大量温度觉(主要是冷觉)信息和从视前区-下丘脑前部传来的温度觉(主要是热觉)信息,进行整合并决定调定点水平。调定点假说的根据尚不够充分,争论也较多,尚待探索。 体温的自主性调节主要通过反射来实现。环境温度或机体活动的改变将引起体表温度或深部血温的变动,从而刺激了外周或中枢的温度感受器。温度感受器的传入冲动经下丘脑整合后,中枢便发出冲动(或引起垂体释放激素),使内分泌腺、内脏、骨骼肌、皮肤血管和汗腺等效应器的活动发生改变,结果调整了机体的产热过程和散热过程,从而可以保持体温的相对稳定。
这一调节机制,与控制论的原理颇为符合(见图)。体温调节机制相当于负反馈控制系统。当体温高于或低于37℃(偏离了“调定点”水平)时,温度感受器的传入冲动(反馈信息)经视前区-下丘脑前部(比较装置)整合后,中枢传出冲动便调整了产热和散热器官的活动,使体温复归原初的水平。在自动控制系统中,输入比较装置以决定“调定点”水平的参考信号是由操纵者事先给定的。但是在体温调节机制中,在下丘脑进行比较和整合后,决定体温的调定点水平。 下丘脑体温调节中枢含有丰富的单胺能神经元,释放去甲肾上腺素(NE)、5-羟色胺(5-HT)和多巴胺(DA)等神经递质。灌流动物侧脑室或下丘脑的实验证明:5-HT可引起猫、狗、猴的体温升高,并伴有寒颤和外周血管收缩反应,但兔和大鼠对5-HT的效应则与此相反。去甲肾上腺素可引起猫、狗、牡牛的体温降低,并伴有外周血管舒张等效应,但兔、羊、大鼠的效应相反。多巴胺的作用与去甲肾上腺素大致相似。将动物置于冷或热环境中,也能相应地引起脑内释放这类递质。上述研究表明,神经递质可能在体温调节中起重要作用。