人工智能要基础吗?
发布网友
发布时间:2022-04-24 16:37
我来回答
共4个回答
热心网友
时间:2022-04-30 20:07
答案:要基础的。不过,从事方向不一样,基础是不同的。
如果你是想充分地运用人工智能技术来解决实际的业务问题,那么你只需要常规的编程基础即可。
如果你立志于算法工程师,从初学者入门角度来说,需要如下基础:
1)基础的高等数学:AI中的算法,基本在解决求极值的问题,或者更多的是约束最优化问题,因此高等数学是基础;
2)基础的概率论与数理统计:现在的人工智能,大多数的模型本质上是概率统计模型,概率与数理统计是必须的基础;
3)线性代数:尤其是矩阵运算,整个AI随处可见的矩阵运算,这个算是最常用的了;
如果有用,烦请点击右上角的关注。
热心网友
时间:2022-04-30 21:25
学习人工智能AI需要:
1.数学基础:
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析;
2.算法积累:
神经网络,支持向量机,贝叶斯,决策树,逻辑回归,线性模型,聚类算法,遗传算法,估计方法,特征工程等;
3.编程语言:
至少掌握一门编程语言,越精通越好,毕竟算法的实现还是要编程的;
4.技术基础:
计算机原理,操作系统,程序设计语言,分布式系统,算法基础;
热心网友
时间:2022-04-30 22:59
学习人工智能当然需要基础,
学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
人工智能门槛比较高,需要积累,如果你有这方面的天赋,可以去尝试。
热心网友
时间:2022-05-01 00:51
门槛一、数学基础
我们应该了解过,无论对于大数据还是对于人工智能而言,其实核心就是数据,通过整理数据、分析数据来实现的,所以数学成为了人工智能入门的必修课程!
数学技术知识可以分为三大学科来学习:
1、线性代数,非常重要,模型计算全靠它~一定要复习扎实,如果平常不用可能忘的比较多;
2、高数+概率,这俩只要掌握基础就行了,比如积分和求导、各种分布、参数估计等等。
提到概率与数理统计的重要性,因为cs229中几乎所有算法的推演都是从参数估计及其在概率模型中的意义起手的,参数的更新规则具有概率上的可解释性。对于算法的设计和改进工作,概统是核心课程,没有之一。当拿到现成的算法时,仅需要概率基础知识就能看懂,然后需要比较多的线代知识才能让模型高效的跑起来。
3、统计学相关基础
回归分析(线性回归、L1/L2正则、PCA/LDA降维)
聚类分析(K-Means)
分布(正态分布、t分布、密度函数)
指标(协方差、ROC曲线、AUC、变异系数、F1-Score)
显著性检验(t检验、z检验、卡方检验)
A/B测试
门槛二、英语水平
我这里说的英语,不是说的是英语四六级,我们都知道计算机起源于国外,很多有价值的文献都是来自国外,所以想要在人工智能方向有所成就,还是要读一些外文文献的,所以要达到能够读懂外文文献的英语水平。
门槛三、编程技术
首先作为一个普通程序员,C++ / Java / Python 这样的语言技能栈应该是必不可少的,其中 Python 需要重点关注爬虫、数值计算、数据可视化方面的应用。
人工智能入门的三道门槛,都是一些必备的基础知识,所以不要嫌麻烦,打好基础很关键!