求解方程x''(t)+x(t)=1/(sint)^3
发布网友
发布时间:2023-07-10 04:09
我来回答
共1个回答
热心网友
时间:2024-11-25 03:25
解:∵微分方程为x"+x=1/(sint)³,化为
x"sint+x'cost-x'cost+xsint=
1/(sint)²,(x'sint)'-(xcost)'=
1/(sint)²
∴两边积分,有x'sint-xcost=-cotx+a(a为任意常数);有x'/sint-xcost/sin²t=
-cost/sin³t+a/sin²t,(x/sint)'=-cost/sin³t+a/sin²t,两边积分,有x/sint=1/2sin²t-acott+b(b为任意常数)
∴方程的通解为x=1/2sint-acost+b
sint