问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

高二年级数学必修三知识点归纳

发布网友 发布时间:2023-07-04 01:14

我来回答

1个回答

热心网友 时间:2023-10-08 13:55

1.高二年级数学必修三知识点归纳


  1.函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2.复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

2.高二年级数学必修三知识点归纳

  1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

  2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

  3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

  4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

  7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

  8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

3.高二年级数学必修三知识点归纳


  空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

  ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为。

  ②平面的垂线与平面所成的角:规定为。

  ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

  在解题时,注意挖掘题设中两个主要信息:

  (1)斜线上一点到面的'垂线;

  (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

  (3)二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角。

  ④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角。

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角。

4.高二年级数学必修三知识点归纳


  空间中的垂直关系

  1、直线与平面垂直

  定义:直线与平面内任意一条直线都垂直

  判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

  性质:垂直于同一直线的两平面平行

  推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

  直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

  2、平面与平面垂直

  定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

  判定:一个平面过另一个平面的垂线,则这两个平面垂直

  性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

5.高二年级数学必修三知识点归纳

  一、事件

  1.在条件SS的必然事件.

  2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.

  3.在条件SS的随机事件.

  二、概率和频率

  1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.

  2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA

  nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.

  3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
导购什么字 店面导购员是什么意思 HKEY_LOCAL_MACHINE\SOFTWARE\Macromedia\FlashPlayer\SafeVersions... 无法安装adobeflashplayer,说无法注册ACTIVEX的控件 无法注册flash player的activex怎么办 omniverse create 他总说无法注册Flash player的Active控件 然后什么访问以下链接。不要... excel如何用进度条的形式表示完成率 买了件速干衣,北面的,求大神看一下真假。 秦皇岛银谷全城热恋是不是要预定票啊 高二数学必修三重点知识归纳 高二数学必修三知识点整理 高二必修三数学知识点梳理 患结核性腹膜炎,病人在饮食上该注意些什么 结核性腹膜炎腹水怎么办? 治疗结核性腹膜炎,最重要的 结核性腹膜炎治疗中最重要的措施是 结核性腹膜炎能治愈吗?有生命危险吗?要用什么药? 脑子里有胶质瘤应该怎么办(脑子里生胶质瘤) 东芝350吨压铸机怎样调整锁模力 2006年执业护士基础护理学知识指导系统理论 注塑机调模最大限位的在哪个位置 部勒压铸机840开闭模,限位开关怎么调试? 力劲压铸机开模限位开关在哪 2006年执业护士知识点之护理学的形成 苹果手机facetime打不通怎么办? 苹果手机为什么打不开facetime 小森生活猫咪怎么领养 和平精英怎么领养猫咪? 石家庄自考毕业登记表个人信息处该怎么填写? 高二年级数学必修三知识点 香港功夫巨星和小白花是谁 功夫巨星李小龙为什么会在盛年就突然去世呢? 功夫巨星李小龙是怎么离世的 跪求好心人分享咸鱼传奇2017年上映的由王宁主演的免费高清百度云资源 墙面装饰:绘画涂鸦拯救单调墙面 80平休闲现代风格家居,用涂鸦妆点新家 家居装饰涂鸦墙面布置童心未泯的小窝 如何打造性感俏皮的发型? 如何瘦脸的效果最好? 志高柜机显示E7什么意思 柜机志高空调E7什么意思? 怎样吃健康又减肥?如何正确的节食减肥? 节食减肥的最好方法? 怎么健康节食减肥?怕节食太伤身体,又不喜欢做运动该怎么节食才健康 怎么样节食减肥才能有效? 人的哪些习惯容易使人变胖? 肥肉越长越多的原因有啥?哪些习惯会让你越来越胖? 有哪些不良习惯会让人变胖? 易发胖的习惯有哪些?哪些习惯会让人长胖?