九年级数学期末测试题,地址。
发布网友
发布时间:2022-04-24 16:07
我来回答
共4个回答
热心网友
时间:2023-08-07 07:27
九年级数学上学期期末复习训练题
(本训练题分三个大题,满分120分,训练时间共120分钟)
一、选择题(本大题10题,共30分):
1.已知 = ,其中a≧0,则b满足的条件是( )
A.b<0 B.b≧0 C.b必须等于零 D.不能确定
2.已知抛物线的解析式为y= -(x-3)2+1,则它的定点坐标是( )
A.(3,1) B.(-3,1) C.(3,-1) D.(1,3)
3.下列交通标志中,既是轴对称图形又是中心对称图形的是( )
4.已知(1-x)2 + =0,则x+y的值为( )
A.1 B.2 C.3 D.4
5.校运动会上,小明同学掷出的铅球在场地上砸出一个坑口直径为10cm,深为2cm的小坑,则该铅球的直径约为( )
A.10cm B.14.5cm C.19.5cm D.20cm
6.在新年联欢会上,九年级(1)班的班委设计了一个游戏,并给予胜利者甲、乙两种不同奖品中的一种. 现将奖品名称写在完全相同的卡片上,背面朝上整齐排列,如图所示. 若阴影部分放置的是写有乙种奖品的卡片,则胜利者小刚同学得到乙种奖品的概率是( )
A. B. C. D.
7.某城市2007年底已绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009年底增加到363公顷. 设绿化面积平均每年的增长率为x,由题意,所列方程正确的是( )
A.300(1+x)=363 B.300(1+x)2 =363
C.300(1+2x)=363 D.300(1-x)2 =363
8.已知关于x的一元二次方程x2 +mx+4=0有两个正整数根,则m可能取的值为( )
A.m>0 B.m>4 C.-4,-5 D.4,5
9.如图,小明为节省搬运力气,把一个棱长为1m的正方体木箱在地面上由起始位置沿直线l不滑动的翻滚,翻滚一周后,原来与地面接触的面ABCD又落回到地面,则点A1所走路径的长度为( )
A.( )m B.( )m
C.( )m D.( )m
10.如图,已知直线BC切⊙O于点C,PD为⊙O的直径,BP的延长线与CD的延长线交于点A,∠A=28°,∠B=26°,则∠PDC等于( )
A.34° B.36° C.38° D.40°
二、填空题(本大题6小题,共18分):
11.已知 =1.414,则 (保留两个有效数字).
12.若两圆的半径分别是方程x2-3x+2=0的两根,且两
圆相交,则两圆圆心距d的取值范围是 .
13.若函数y=ax2+3x+1与x轴只有一个交点,则a的值为 .
14.如图,已知大半圆O1与小半圆O2内切于点B,大半圆的弦MN切小半圆于点D,若MN∥AB,当MN=4时,则此图中的阴影部分的面积是 .
15.国家为鼓励消费者向商家索要*消费,制定了一定的奖励措施,其中对100元的*(外观一样,奖励金额用密封签封盖)有奖金5元,奖金10元,奖金50元和谢谢索要四种,现某商家有1000张100元的*,经税务部门查证,这1000张*的奖励情况如下表, 某消费者消费100元,向该商家索要*一张,中10元奖金的概率是 .
奖项5元10元50元谢谢索要
数量50张20张10张剩余部分
16.如图,AB为⊙O的直径,CD为弦,CD⊥AB于E,如果CD=6,OE=4,那么AC的长为 .
三、解答题(本大题8题,共72分):
17.(6分)计算: .
18.(6分)解方程:x2-6x+9=(5-2x)2.
19.(8分)先化简,再求值:
,其中a是方程2x2-x-3=0的解.
20.(8分)如图,已知三个同心圆,等边三角形ABC的三个顶点分别在三个圆上,请你把这个三角形绕着点O顺时针旋转120°,画出△A/B/C/. (用尺规作图,不写画法,保留作图痕迹)
21.(10分)一个密封的口袋中有两种只有颜色不同的红球x个,黄球y个,从口袋中随机地取出一个球,若它是红球的概率为 .
(1)求y与x的函数关系式;
(2)若从口袋中拿出6个红球后,再从口袋中随机取出一个球是红球的概率为 ,求口袋中原有红球和黄球各多少个.
22.(10分)为了测量一种圆形零件的精度,在加工流水线上设计了用两块大小相同,且含有30°角的直角三角尺按示意图的方式测量.
(1)若⊙O分别与AE、AF相切于点B、C,
其中DA、GA边在同一直线上.求证:
OA⊥DG;
(2)在(1)的情况下,若AC= AF,且
AF=3,求弧BC的长.
23.(12分)如图,抛物线y=-x2+bx+c与x轴的一个交点是A,与y轴的交点是B,且OA、OB(OA<OB)的长是方程x2-6x+5=0的两个实数根.
(1)求A、B两点的坐标;
(2)求出此抛物线的解析式及顶点D的坐标;
(3)求出此抛物线与x轴的另一个交点C的坐标;
(4)在直线BC上是否存在一点P,使四边形PDCO为梯形?若存在,求出P点的坐标;若不存在,说明理由.
24.(12分)如图,在直角坐标系xoy中,点A(2,0),点B在第一象限且△OAB为等边三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.
(1)判断点C是否为弧OB的中点?并说明理由;
(2)求B、C两点的坐标;
(3)求直线CD的函数解析式;
(4)点P在线段OB上,且满足四边形OPCD是等
腰梯形,求点P的坐标.
参*:
一、选择题:BADCB, BBCCB.
二、填空题:
11.0.17; 12.1<d<3; 13. a= 或0;
14. 2 ; 15. ; 16. 3 .
三、解答题:
17. 解:原式=1-(2-1)+2 =1-1+2 +2- = +2.
18. 解:x2-6x+9=(5-2x)2,(x-3)2=(5-2x)2,
[(x-3)+(5-2x)][(x-3)-(5-2x)]=0
∴x1=2,x2= .
19.解:原式=( )(a+1)=
= ,
由方程2x2-x-3=0得:x1= ,x2=-1,
但当a=x2=-1时,分式无意义;当a=x1= 时,原式=2.
20.略.
21.(1)由题意得: ,整理得:y= ;
(2)由题意得: ,解得:x=12,y=9,答:略.
22.解:(1)证明:连结OB,OC,∵AE、AF为⊙O的切线,BC为切点,
∴∠OBA=∠OCA=90°,易证∠BAO=∠CAO;
又∠EAD=∠FAG,∴∠DAO=∠GAO;
又∠DAG=180°,∴∠DAO=90°,∴OA⊥DG.
(2)因∠OCA=∠OBA=90°,且∠EAD=∠FAG=30°,则∠BAC=120°;
又AC= AF=1,∠OAC=60°,故OC= ,弧BC的长为 .
23.解:(1)∵x2-6x+5=0的两个实数根为OA、OB(OA<OB)的长,
∴OA=1,OB=5,∴A(1,0),B(0,5).
(2) ∵抛物线y=-x2+bx+c与x轴的一个交点是A,与y轴的交点 B,
∴ ,解得: ,
∴所求二次函数的解析式为:y=-x2-4x+5,
顶点坐标为:D(-2,9).
(3)此抛物线与x轴的另一个交点C的坐标(-5,0).
(4)直线CD的解析式为:y=3x+15,
直线BC的解析式为:y=x+5;
①若以CD为底,则OP∥CD,直线OP的解析式为:y=3x,
于是有 ,
解得: ,
∴点P的坐标为(5/2,15/2).
②若以OC为底,则DP∥CO,
直线DP的解析式为:y=9,
于是有 ,
解得: ,
∴点P的坐标为(4,9),
∴在直线BC上存在点P,
使四边形PDCO为梯形,
且P点的坐标为(5/2,15/2)或(4,9).
24.解:(1)C为弧OB的中点,连结AC,
∵OC⊥OA,∴AC为圆的直径,
∴∠ABC=90°;
∵△OAB为等边三角形,
∴∠ABO=∠AOB=∠BAO=60°,
∵∠ACB=∠AOB=60°,
∴∠COB=∠OBC=30°,
∴弧OC=弧BC,
即C为弧OB的中点.
(2)过点B作BE⊥OA于点E,∵A(2,0),∴OA=2,OE=1,BE= ,
∴点B的坐标为(1, );
∵C为弧OB的中点,CD是圆的切线,AC为圆的直径,
∴AC⊥CD,AC⊥OB,∴∠CAO=∠OCD=30°,
∴OC= ,∴C(0, ).
(3)在△COD中,∠COD=90°,OC= ,
∴OD= ,∴D( ,0),∴直线CD的解析式为:y= x+ .
(4)∵四边形OPCD是等腰梯形,
∴∠CDO=∠DCP=60°,
∴∠OCP=∠COB=30°,∴PC=PO.
过点P作PF⊥OC于F,
则OF= OC= ,∴PF=
∴点P的坐标为:( , ).追问真抱歉,这套习题我们做过了。不过还是很谢谢你。
热心网友
时间:2023-08-07 07:27
一、选择题(本大题5小题,每小题3分,共15分)每小题列出的四个选项中,只有一个是正确的,将正确答案的代号字母填入题后括号内。
1. 下列运算中,正确的是( )
A. B.
C. D.
2. 若关于x的一元二次方程 的常数项是0,则m的值是( )
A.1 B.2 C.1或2 D. 0
3. 一个不透明的口袋中装有 个苹果和3个雪梨中,从任选1个记下水果的名称,再把它放回袋子中.经过多次试验,发现摸出苹果的可能性是0.5,则n的值是 ( )
A.1 B.2 C.3 D.6
4. 在同一直角坐标系中,函数 与 的图象可能是 ( )
5. 在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )
A.25π B.65π C.90π D.130π
二、填空题(本大题共5小题,每小题4分,共20分)把下列各题的正确答案填写在横线上。
6. 比较大小:8 (填“<”、“=”或“>” )
7. 同时掷二枚普通的骰子,数字和为l的概率为 ,数字和为7的概率为 ,数字和为2的概率为 .
8. 对于任意不相等的两个数a,b,定义一种运算※如下:a※b= ,
如3※2= .那么12※4= 。
9. 圆锥的母线长为3,底面半径为2,则它的侧面积为 .
10. 如图,AB与⊙O相切于点B,AO延长线交⊙O点C,连接BC,
若∠A=38°,则∠C= 。
三、解答题(一)(本大题5小题,每小题6分,共30分)
11. 计算:
12. 计算:
13. 解方程:
14. 先化简,再求值: ,其中 。
15. 矩形的两条边长分别是 和 ,求该矩形的面积和对角线的长.
四、解答题(二)(本大题共4小题。每小题7分。共28分)
16. 已知实数m,n(m>n)是方程 的两个根,求 的值.
17. 如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB = 26m,OE⊥CD于点E.水位正常时测得OE∶CD=5∶24(1)求CD的长;
(2)现汛期来临,水面要以每小时4 m的速度上升,
则经过多长时间桥洞会刚刚被灌满?
18. 袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同则小英赢,否则小明赢.
(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;
(2)这个游戏规则公平吗?请说明理由.
19. 据某市车管部门统计,2008年底全市汽车拥有量为150万辆,而截止到2010年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变.
(1)求2009年底该市汽车拥有量;
(2)如果不加控制,该市2012年底汽车拥有量将达多少万辆?
五、解答题(三)(本大题3小题,每小题9分,共27分)
20. 如图,在 中, 是边 上的高, 为边 的中点,
, , .
(1)求线段 的长;
(2)求tan∠EDC的值.
21. 小红用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离 米。当她与镜子的距离 米时,她刚好能从镜子中看到教学大楼的顶端B。已知她的眼睛距地面高度 米,请你帮助小红测量出大楼AB的高度(注:入射角=反射角)。
22. 如图,已知二次函数 的图像经过点A(-3,-1)和点B(-3,-9).
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,-m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离.
热心网友
时间:2023-08-07 07:28
有很多的喔...
热心网友
时间:2023-08-07 07:28
不要投机取巧追问我只是要做练习而已。