多元回归分析分类函数有哪些
发布网友
发布时间:2023-07-05 00:32
我来回答
共1个回答
热心网友
时间:2024-11-28 09:58
在Matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为
b=regress(y,x)
或
[b,bint,r,rint,statsl = regess(y,x,alpha)
其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入
对一元线性回归,取k=1即可。alpha为显著性水平(缺省时设定为0.05),输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有四个数值,第一个是R2,其中R是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,第四个是 an estimate of the error variance(一个错误的方差估计)。
stats参数解释如下:
R2表示方差解释率,R2越接近1说明数据拟合程度越好。
F统计量用于检验模型是否通过检验。通过查F分布表,如果F>F分布表中对应的值,则通过检验。
P为F 统计量对应的概率,越接近0越好,当P<α时拒绝H0,回归模型成立!!!
第4个参数不知何用。 画出残差及其置信区间,用命令rcoplot(r,rint)