求数量积公式A.B=|a||b|cosθ的推导,数学帝帮帮我
发布网友
发布时间:2022-04-24 14:15
我来回答
共1个回答
热心网友
时间:2023-10-15 23:08
公式 a·b=|a|·|b|cosθ 是数学中为内积作的定义,
a·b=x1·x2+y1·y2 是由此推导出来的,需要和差化积公式。
先取 α,β介于0到2π , 分别代表由 x正实轴转到 a,b 向量的夹角。 不妨假设 α>β,(β>α可类似证明)可得到四个三角函数值:
sin α = y1/sqrt(x1^2+y1^2)
cos α = x1/sqrt(x1^2+y1^2)
sin β = y2/sqrt(x2^2+y2^2)
cos β = x2/sqrt(x2^2+y2^2)
其夹角取 θ = α-β ,则 cos θ =cos(α-β) 套用和差化积公式
cos( α-β) = (cos α)*(cos β) + (sin α)*(sin β)
带入后 约去分母,一下便得到结果!
写在纸上一目了然。另外说一下,sqrt 表示取平方根, ^ 也就是键盘 6 上头那个符号,在数学中表示 平方的意思。例如
|a|=根号下[(x1)2+(y1)2]
即可表示为
|a|=sqrt(x1^2+y1^2)
其他类似
a·b=x1·x2+y1·y2
|a||b|cosθ =|a||b|*(|a|^2+|b|^2-(y1-y2)^2-(x1-x2)^2)/2|a||b|
=(x1^2+y1^2+x2^2+y2^2-x1^2-x2^2-y1^2-y2^2+2*x1x2+2*y1y2)/2
=x1y1+x2y2
得证