发布网友 发布时间:2022-04-24 14:46
共4个回答
热心网友 时间:2023-10-17 03:23
是的。
无论什么样的函数,只要存在原函数,则原函数一定是可导函数,因此一定是连续的。分段函数的话就分段积分得到的原函数也是分段的。
原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
连续函数的定理:
定理一 在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。
定理二 连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。
定理三 连续函数的复合函数是连续的。
这些性质都可以从连续的定义以及极限的相关性质中得出。
热心网友 时间:2023-10-17 03:23
因为连续函数一定有原函数,积分上限函数是该导函数的一个原函数,切积分上限函数一定连续,所以导函数连续原函数一定连续热心网友 时间:2023-10-17 03:24
不一定热心网友 时间:2023-10-17 03:25
汗。。。可导就已经可以推出连续了,哪来的这么个命题?