发布网友 发布时间:2023-07-07 16:30
共1个回答
热心网友 时间:2024-06-28 11:49
Z变换的存在充分必要条件是:级数绝对可和。使级数绝对可和的成立的所有Z值称为Z变换域的收敛域。由Z变换的表达式及其对应的收敛域才能确定原始的离散序列。 收敛域可用公式表示为:
(1)收敛域是一个圆环,有时可向内收缩到原点,有时可向外扩展到∞,只有 的收敛域是整个Z平面;
(2)在收敛域内没有极点,X(Z)在收敛域内每一点上都是解析函数。 (1)有限长序列
指序列只在有限长的区间内为非零值,即
显然|Z|在整个开域 都能满足Z变换存在条件,因此有限长序列的收敛域是除0及∞两个点(对应n>0和n<0不收敛)以外的整个Z平面: 。如果对n1,n2加以一定的*,如 或 ,则根据条件 ,收敛域可进一步扩大为包括0点或∞点的半开域。
(2)右边序列
指序列 只在 有值,而 时, ,这时 ,其收敛域为收敛半径 以外的Z平面,即 。右边序列Z变换可表示为:
(3)左边序列
指序列 只在 有值,而 时, ,这时,其收敛域为收敛半径 以内的Z平面,即 。左边序列Z变换可表示为:
(4)双边序列
可看作一个左边序列和一个右边序列之和,因此双边序列Z变换的收敛域是这两个序列Z变换收敛域的公共部分。双边序列Z变换可表示为:
(如果 ,则存在公共的收敛区间, 有收敛域: 如果 ,无公共收敛区间, 无收敛域,不收敛。 )