牛顿第二定律可以用的在什么地方
发布网友
发布时间:2022-04-24 17:05
我来回答
共4个回答
热心网友
时间:2022-05-02 17:52
1.定律内容 物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”。即动量对时间的一阶导数等于外力之和。 牛顿第二定律说明了在宏观低速下,∑F∝a,∑F∝m,用数学表达式可以写成∑F=kma,其中的k是一个常数。但由于当时没有规定1个单位的力的大小,于是取k=1,就有∑F=ma,这就是今天我们熟悉的牛顿第二定律的表达式。
牛顿第二定律的适用范围
1.当考察物体的运动线度可以和该物体的德布罗意波长相比拟时,由于粒子运动不准确性原理(即无法同时准确测定粒子运动的方向与速度),物体的动量和位置已经是不能同时准确获知的量了,因而牛顿动力学方程缺少准确的初始条件无法求解。也就是说经典的描述方法由于粒子运动不准确性原理已经失效或者需要修改。量子力学用希尔伯特空间中的态矢概念代替位置和动量(或速度)的概念(即波函数)来描述物体的状态,用薛定谔方程代替牛顿动力学方程(即含有力场具体形式的牛顿第二定律)。 用态矢代替位置和动量的原因是由于测不准原理我们无法同时知道位置和动量的准确信息,但是我们可以知道位置和动量的概率分布,测不准原理对测量精度的*就在于两者的概率分布上有一个确定的关系。 2.由于牛顿动力学方程不是洛伦兹协变的,因而不能和狭义相对论相容,因而当物体做高速移动时需要修改力,速度,等力学变量的定义,使动力学方程能够满足洛伦兹协变的要求,在物理预言上也会随速度接近光速而与经典力学有不同。 但我们仍可以引入“惯性”使牛顿第二定律的表示形式在非惯性系中使用。 例如:如果有一相对地面以加速度为a做直线运动的车厢,车厢地板上放有质量为m的小球,设小球所受的合外力为F,相对车厢的加速度为a',以车厢为参考系,显然牛顿运动定律不成立.即 F=ma'不成立 若以地面为参考系,可得 F=ma中,a对地是小球相对地面的加速度. 由运动的相对性可知:a对地=a+a' 将此式带入上式,有 F=m(a+a')=ma+ma' 则有 F+(-ma)=ma' 故此时,引入Fo=-ma,称为惯性力,则F+Fo=ma' 此即为在非惯性系中使用的牛顿第二定律的表达形式. 由此,在非惯性系中应用牛顿第二定律时,除了真正的和外力外,还必须引入惯性力Fo=-ma,它的方向与非惯性系相对惯性系(地面)的加速度a的方向相反,大小等于被研究物体的质量乘以a。 注意: 当物体的质量m一定时,物体所受合外力F与物体的加速度a是成正比的是错误的,因为是合力决定加速度。但当说是物体的质量m一定时,物体的加速度a与物体所受合外力F成正比时则是正确的。 解题技巧: 应用牛顿第二定律解题时,首先分析受力情况,运动图景,列出各个方向(一般为正交分解)的受力的方程与运动方程。 同时,寻找题目中的几何约束条件(如沿绳速度相等等)列出约束方程。联立各方程得到物体的运动学方程,然后依据题目要求积分求出位移、速度等。
牛顿第二定律的应用
牛顿第二定律是经典力学的基础和核心,是分析、研究和解决力学问题的三*宝之一,同时也是高考考查的重点和热点。因此,深刻理解和灵活应用牛顿第二定律是力学中非常重要的内容,下面阐述应用牛顿第二定律时的几类典型问题,供大家参考。
一、连接体问题
两个或两个以上物体相互连接并参与运动的系统称为有相互作用力的系统,即为连接体问题,处理非平衡状态下的有相互作用力的系统问题常常用整体法和隔离法。 当需要求内力时,常把某个物体从系统中“隔离”出来进行研究,当系统中各物体加速度相同时,可以把系统中的所有物体看成一个整体进行研究。 例1:如图1所示的三个物体质量分别为m1.m2和m3。带有滑轮的物体放光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计。为使三个物体无相对滑动,试求水平推力F的大小。
解答:本题是一道典型的连接体问题。 由题意可知,三个物体具有向右的相同的加速度,设为a,把它们三者看成一个整体,则这个整体在水平方向只受外力F的作用。 由牛顿第二定律,即: F=(m1+m2+m3)a ……① 隔离m2,受力如图2所示 在竖直方向上,应有: T=m2g ……②
隔离m1,受力如图3所示 在水平方向上,应有: T′=m1a……③ 由牛顿第三定律 T′=T ……④
联立以上四式解得: 点评:分析处理有相互作用力的系统问题时,首先遇到的关键问题就是研究对象的选取。其方法一般采用隔离和整体的策略。隔离法与整体法的策略,不是相互对立的,在一般问题的求解中随着研究对象的转化,往往两种策略交叉运用,相辅相成,所以我们必须具体问题具体分析,做到灵活运用。
二、瞬时性问题
当一个物体(或系统)的受力情况出现变化时,由牛顿第二定律可知,其加速度也将出现变化,这样就将使物体的运动状态发生改变,从而导致该物体(或系统)对和它有联系的物体(或系统)的受力发生变化。 例2:如图4所示,木块A与B用一轻弹簧相连,竖 直放在木块C上。三者静置于地面,它们的质量之比是1∶2∶3。设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度aA、aB分别是多少?
解答:本题所涉及到的是弹力的瞬时变化问题。 原来木块A和B都处受力平衡状态,当突然抽出木块C的瞬间,C给B的支持力将不复存在,而A、B间的弹簧还没有来得及发生形变,仍保持原来弹力的大小和方向。 分析此题应从原有的平衡状态入手 设木块A的质量为m,B的质量则为2m。 抽出木块C前木块,A、B的受力分别如图5.6所示。
抽出木块C后,A的受力情况在瞬间不会发生变化,仍然保持原有的平衡状态,则aA=0。 抽出木块C后,对B木块来说,N消失了。则
(方向竖直向下)
(方向竖直向下) 点评:解答瞬时性问题要把握两个方面:一是区别“刚性绳”和“弹性绳”,当受力发生变化时前者看成形变为零,受力可以突变;后者的形变恢复需要时间,弹力的大小不能突变。二是正确分析物体在瞬间的受力情况,应用牛顿第二定律求解。
三、临界问题
某一物理现象转化为另一物理现象的转折状态叫临界状态,临界状态可理解为“恰好出现”或“恰好不出现”的交界状态。处理临界问题的关键是要详细分析物理过程,根据条件变化或状态变化,找到临界点或临界条件,而寻找临界点或临界条件常常用到极限分析的思维方法。 例3:如图7所示,倾角为α的光滑斜面体上有一个小球m被平行于斜面的细绳系于斜面上,斜面体放在水平面上
(1)要使小球对斜面无压力,求斜面体运动的加速度范围,并说明其方向。 (2)要使小球对细绳无拉力,求斜面体运动的加速度范围,并说明其方向。 解答:为了确定小球对斜面无压力或对细绳无拉力时斜面体的加速度,应先考虑小球对斜面体或对细绳的弹力刚好为零时的受力情况,再求出相应的加速度。 (1)分析临界状态,受力如图8所示
依题则有: ∑F=ma0=mgcotα 即可得a0=gcotα 则斜面体向右运动的加速度 a≥a0=gcotα(方向水平向右) (2)分析临界状态,受力如图9所示。
依题意则有
(方向水平向左)即可得:
则斜面体向左运动的加速度 点评:临界问题和极值问题是中学物理习题中的常见题型,它包含着从某一物理现象转变为另一种物理现象,或从某一物理过程转入另一物理过程的转折状态。在这个转折点上,物理系统的某些物理量正好有临界值。常用“最大”“最小”“刚好”“恰好”等词语指明或暗示题中要求的临界值或范围。我们通常用极限分析法,首先找出发生连续性变化的物理量,将其变化推向一个或两个极限,从而暴露其间存在的状态与条件的关系,然后应用物理规律列式求解。
热心网友
时间:2022-05-02 19:10
什么地方都能用
热心网友
时间:2022-05-02 20:45
在惯性系中可以使用
热心网友
时间:2022-05-02 22:36
太多了