发布网友 发布时间:2023-08-02 15:22
共2个回答
热心网友 时间:2024-11-26 07:54
1、定义不同行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于滚旅困方程组的系数及常数所构成的方阵。2、表达式不同行列式:n阶行列式设是由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和。矩阵:由m×n个数aij排成的m行n列的数表称为m行n列的矩阵,简称m×n矩阵。记作:这m×n个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数aij为(i,j)元的矩阵可记为(aij)或(aij)m×n,m×n矩阵A也记作Amn。3、性质不同行列式:行列式A中某行(或列)用同一数k乘,其结果等于kA。行列式A等于其转置行列式AT(AT的第i行为A的第i列)。若n阶行列式|αij|中某行(或列);行列式则|α[tele.xctlbg.cn/article/105283.html]热心网友 时间:2024-11-26 07:54
与行列式是两个完全不同的概念.矩阵仅仅是一个矩形的矩阵“数表”,行列式是在一个方形数表中根据定义规则进行运算的代数式,这是基本的区别.具体来说有以下几点: