发布网友 发布时间:2022-04-25 12:24
共3个回答
热心网友 时间:2022-07-19 11:51
小数乘法法则是:
1、按整数乘法的法则算出积;
2、再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3、得数的小数部分末尾有0,一般要把0去掉。
除数是小数的小数除法法则:
1、先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2、然后按照除数是整数的小数除法来除。
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数) ×(乘号) 200(因数) =(等于号) 2000(积)因数也叫乘数。
扩展资料:
古巴比伦数学使用60进制,考古发现的一块古巴比伦泥板证实了这一点。这块泥板上有一个正方形,对角线上有四个数字1, 24, 51, 10。最初发现这块泥板时人们并不知道这是什么意思,后来某牛人惊讶地发现,如果把这些数字当作60进制的三位小数的话,得到的正好是单位正方形对角线长度的近似值:1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296296...
这说明古巴比伦已经掌握了勾股定理。60进制的使用为古巴比伦数学的乘法运算发展带来了很大的障碍,因为如果你要背59-59乘法口诀表的话,至少也得背1000多项,等你把它背完了后我期末论文估计都已经全写完了。
另一项考古发现告诉了我们古巴比伦数学的乘法运算如何避免使用乘法表。考古学家们发现一些泥板上刻有60以内的平方表,利用公式ab = [(a+b)^2 - a^2 - b^2]/2 可以迅速查表得到ab的值。
另一个公式则是ab = [(a+b)^2 - (a-b)^2]/4,这说明两个数相乘只需取它们的和平方与差平方的差,再两次取半即可。平方数的频繁使用很可能加速了古巴比伦人发现勾股定理的过程。
参考资料:百度百科--乘法
热心网友 时间:2022-07-19 13:09
先按照整数乘法的法则算出积。
再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数乘法的意义:
小数乘法的意义比整数乘法的意义,有了进一步的扩展。小数乘法的意义包括:同整数乘法的意义相同,即求相同加数的和的简便运算。
乘法的原理:
乘法原理:如果因变量 f与自变量 x1, x2, x3,…. xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量 f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
乘法的运算定律:
整数的 乘法运算满足: 交换律, 结合律, 分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是 哈密尔顿发现的 四元数群。 但是结合律仍然满足。
热心网友 时间:2022-07-19 14:43
付费内容限时免费查看回答亲,小数乘除法计算法则:1、小数的乘法计算法则:先按照整数乘法的计算法则算出积,再看因数*有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用"0"补足。2、小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补"0"),然后按照除数是整数的除法法则进行计算。