发布网友 发布时间:2023-07-23 14:39
共1个回答
热心网友 时间:2024-12-12 00:45
1+i的i次方的辐角主值是e^(iln√2-π/4)。计算方法如下:(1+i)^i=e^[iLn(1+i)]=e^{i[ln|1+i|+iarg(1+i)+i2kπ]}=e^{i[ln√2+iπ/4+i2kπ]}=e^(iln√2-π/4-2kπ),其主值=e^(iln√2-π/4)。由此可得1+i的i次方的辐角主值是e^(iln√2-π/4)。复值函数设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=?(z)。这个记号表示,?(z)是z通过规则?而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=?(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=?(z)就对应着一对两个实变数的实值函数。