问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

等差数列求和问题

发布网友 发布时间:2022-04-25 11:47

我来回答

2个回答

热心网友 时间:2022-04-24 05:16

1)如果一个数列,不从第2项起,而是从第3项起或从第4项起,每一项与它的前一项的差都等于同一个常数,那么此数列不是等差数列,但可以说从第2项起或第3项起是一个等差数列.

(2)一个数列,从第2项起,每一项与它的前一项的差,尽管等于常数,这个数列可不一定是等差数列,因为这个常数可以不同,当常数不同时,当然不是等差数列,因此定义中“同一个”常数,这个“同一个”十分重要,切记不可丢掉.

(3)求公差d时,可以用d=an-an-1,也可以用d=an+1-an.

(4)公差d∈R,d=0时,数列为常数列;d>0时,数列为递增数列;d<0时,数列为递减数列.

(5)d=an-an-1或d=an+1-an是证明或判断一个数列是等差数列的依据.

2.等差数列的通项公式

(1)通项公式为an=a1+(n-1)d,a1为首项,d为公差.

(2)推导通项公式

下面用几种方法推出等差数列的通项公式:

解法一:(叠加法)

∵{an}为等差数列,则有an-an-1=d,a n-1-a n-2=d,an-2-an-3=d,…,a2-a1=d,以上各式两边相加,得an-a1=(n-1)d.

∴an=a1+(n-1)d.

解法二:(叠代法)

∵{an}为等差数列,则有an=an-1+d=an-2+d+d=an-2+2d=an-3+3d=…=a1+(n-1)D.

解法三:(逐差法)

∵{an}为等差数列,则有an=an-an-1+a n-1,a n-1=a n-1-an-2+a n-2,a n-2=a n-2-an-3+an-3,…,a2=a2-a1+a1,

∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1=(n-1)d+a1.

∴an=a1+(n-1)d.

(3)通项公式的变形

对任意的p,q∈N*,在等差数列中,有ap=a1+(p-1)d,aq=a1+(q-1)d,∴ap-aq=(p-q)D.∴ap=aq+(p-q)D.

通项公式的变形为ap=aq+(p-q)d,请记熟,它在解题中经常被应用.

(4)通项公式的应用

①可以由首项和公差求出等差数列中的任一项.

②已知等差数列的任两项,可以确定等差数列的任一项.

(5)等差数列的图象

由通项公式an=a1+(n-1)d,可得an=dn+(a1-d),如果设p=d,q=a1-d,那么an=pn+q,其中p,q为常数,当p≠0时,an是关于n的一次函数,即(n,an)在一次函数y=px+q的图象上,因此从图象上看,表示数列的各点均在一次函数y=px+q的图象上.例如首项是1,公差是2的无穷等差数列的通项公式为an=2n-1,相应的图象是直线y=2x-1上的均匀排开的无穷多个孤立的点.

总之,公差不为0的等差数列的图象是直线y=px+q上的均匀排开的一群孤立的点;当公差为0时,等差数列为常数列,此时数列的图象是平行于x轴的直线(或x轴)上的均匀排开的一群孤立的点.

3.等差中项

若a,b,c成等差数列,则b= ,2b=a+c,b-a=c-b,a-b=b-c都是等价的.

用递推关系an+1= (an+an+2)给出的数列也是等差数列,an+1称为an、an+2的等差中项.

4.等差数列常用性质

若数列{an}是公差为d的等差数列,

(1)d=0时,数列为常数列;d>0时,数列为递增数列;d<0时,数列为递减数列.

(2)d= = (m,n,k∈N*).

(3)an=am+(m-n)d(m,n∈N*).

(4)若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq.

(5)若 =k,则am+an=2ak(m,n,k∈N*).

(6)数列{an}是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a1+an=a2+an-1=…=ai+1+an-i=….

(7)数列{λan+b}(λ,b是常数)是公差为λd的等差数列.

(8)下标成等差数列且公差为m的项ak,ak+m,ak+2m,…(k,m∈N*)组成公差为md的等差数列.

(9)若数列{bn}也为等差数列,则{an±bn},{kan+bn}(k,b为非零常数)也成等差数列.

(10){an}是等差数列,则a1,a3,a5,…仍成等差数列(首项不一定能够选a1).

(11){an}是等差数列,则a1+a2+a3,a4+a5+a6,a7+a8+a9,…仍成等差数列.

课外讨论

问题1:已知数列{an}的通项公式为an=pn+q,其中p,q为常数,且p≠0,问这个数列一定是等差数列吗?

探究:判断{an}是不是等差数列,可以利用等差数列的定义,也就是an-a n-1(n>1)是不是一个与n无关的常数.

取数列{an}中的任意相邻两项an与an-1(n>1),求差得an-an-1=(pn+q)-〔p(n-1)+q〕=pn+q-pn+p-q=p.

它是一个与n无关的常数,所以{an}是等差数列.

问题2:怎样判断一个数列是等差数列?

探究:根据等差数列的定义可知,一个数列是否为等差数列,要看任意相邻两项的差是否为同一个常数.由本例的结论可知,如果an是关于n的一次式,那么由通项公式an=a1+(n-1)d,可得an=dn+(a1-d).

如果设p=d,q=a1-d,那么an=pn+q.

当p≠0时,an是关于n的一次函数,即(n,an)在一次函数y=px+q的图象上.因此,公差不为0的等差数列的图象是直线y=px+q上的均匀排开的一群孤立的点;当公差为0时,等差数列为常数列,此时数列的图象是平行于x轴的直线(或x轴)上的均匀排开的一群孤立的点.

等差数列的判定方法:

(1)an+1-an=d(常数)(n∈N*) {an}是等差数列.

(2)2an+1=an+an+2(n∈N*) {an}是等差数列.

(3)an=kn+b(k,b为常数) {an}是等差数列.

(4)an-an-1=d(常数)(n≥2且n∈N*) {an}是等差数列.

例题精讲

例1.已知数列{an}为等差数列,且a5=11,a8=5,则an=__________.

解题思路

要求an必须知道a1和d,根据已知的a5=11和a8=5可以列出两个关于a1与d的方程,解此方程组即可求解a1、d的值.

设数列{an}的公差为d,由等差数列的通项公式及已知得

解得
∴an=19+(n-1)(-2),即an=-2n+21.

答案:-2n+21

解题关键

先根据两个独立的条件解出两个量a1和d,进而再写出an的表达式.几个独立的条件就可以解出几个未知量,这是方程思想的重要应用.

例2.已知数列的通项公式为an=6n-1,问:这个数列是等差数列吗?若是等差数列,其首项与公差分别是多少?

解题思路

判断一个数列是否为等差数列,要根据等差数列的定义,只需判断an+1-an是否为常数.如为常数,此数列即为等差数列,否则就不是.

解:∵an+1-an=〔6(n+1)-1〕-(6n-1)=6为常数,

∴{an}为等差数列,其首项为a1=6×1-1=5,公差为6.

解题关键

根据定*题是最基本的途径,只有把握了定义的实质,才能得心应手的去运用它.拓展到利用其他一些引申的性质也可以解决问题.

例3.数列{an}的各项的倒数组成一个等差数列,若a3=2-1,a5=2+1,求a11.

解题思路

∵{ }成等差数列,设其公差为d,首项为 ,然后由通项公式即得d和 ,代入通项公式可求a11.

解:设等差数列为{bn},公差为d.

由已知得b3= = = +1,b5= = = -1.

∴ 解得
∴b11=b1+10d=2-7.

∴a11= = = .

解题关键

在解题过程中要注意到 - =-1,即an+1= ,此类递推公式的数列,可转化为等差数列,进而求出数列的通项公式.

例4.在-1与7之间顺次插入三个数a,b,c,使这5个数成等差数列,则这个数列为_______.

解题思路

此题可求出公差后,再逐项求解,也可以利用等差数列的性质求解.如将-1看成此等差数列的第一项,那么7为此数列的第5项.根据等差数列性质可求出公差,然后可求插入的数为何值.

设这5个数组成的等差数列为{an},由已知a1=-1,a5=7,7=-1+(5-1)d.

解得d=2,所求数列为-1,1,3,5,7.

答案:-1,1,3,5,7

例5.在等差数列{an}中,已知a2+a3+a10+a11=36,求a5+a8的值.

解题思路

根据题中给出等式可以得出此数列的首项a1与公差d之间的关系式,但求出a5+a8仍有困难,所以要将a5+a8变形,用a1与d来表示,即可得出结论.

解:根据题意,有(a1+d)+(a1+2d)+(a1+9d)+(a1+10d)=36,∴4a1+22d=36.

又∵a5+a8=a1+4d+a1+7d=2a1+11d,∴a5+a8=18.

解题关键

此解法设出了a1、d,但并没有求出a1、d,事实上也求不出来,这种“设而不求”的方法在数学中常用,它体现了整体的思想.此题还可以运用等差数列的性质:若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq.则有a5+a8=a2+a11=a3+a10,从而易求出a5+a8=18.

例6.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.

解题思路

此题常规方法是利用已知条件,先求出首项和公差,进而求出这四个数.其实因这里成等差数列的四个数之和已知,故可设此四个数为a-3d,a-d,a+d,a+3d,这样求解更为便利,但必须注意这时的公差应为2d.

解:设这四个数为a-3d,a-d,a+d,a+3d,则由题意得


解得 或,
∴所求四个数为2,5,8,11或11,8,5,2.

解题关键

此题设法很重要,一般有如下规律:

(1)若所给等差数列为2n(n∈N*)项,则可设为

a-(2n-1)d,…,a-3d,a+d,a+3d,…,a+(2n-1)d,数列的公差为2d.

(2)若所给等差数列为2n+1(n∈N*)项,则可设为

a-(n-1)d,…,a-d,a,a+d,…,a+(n-1)d,数列的公差为d.

例7.若数列{an}为等差数列,ap=q,aq=p(p≠q),则ap+q为 ( )

A.p+q B.0 C.-(p+q) D.
解题思路

本题可用通项公式求解,也可利用an=am+(n-m)d求解,还可利用一次函数的图象求解.

不妨设p<q,由于等差数列中,an关于n的图象是一条直线上均匀排开的一群孤立的点,故三点(p,ap),(q,aq),(p+q,ap+q)共线.设ap+q=m,由已知得三点(p,q),(q,p),(p+q,m)共线(如图2-2-1).

由△ABE∽△BCF,得 = .

∴ = .

∴ =1.

∴m=0.

∴应选B.

答案:B

图2-2-1

解题关键

设{an}是公差为d的等差数列,那么an=am+(m-n)d或d= (m,n∈N*).本性质是通项公式的推广,通常适用“已知等差数列某一项(或某几项),求数列中的另一项”一类的题目.应用性质时,应注意n与m的大小关系不确定,当n≤m时,性质仍然成立.

自我训练

达标训练

1.已知等差数列{an}的通项公式an=3-2n,则它的公差为 ( )

A.2 B.3

C.-2 D.-3

思路分析:由an-an-1=d或用特殊值求出a1,a2,则a2-a1=d.

答案:C

2.△ABC中,三内角A、B、C成等差数列,则B等于 ( )

A.30° B.60°

C.90° D.120°

思路分析:由A、B、C成等差数列,得A+C=2B,再根据三角形内角和为180°可求解.

答案:B

3.数列{an}的通项公式an=2n+5,则此数列 ( )

A.是公差为2的等差数列 B.是公差为5的等差数列

C.是首项为5的等差数列 D.是公差为n的等差数列

思路分析:通项公式为an=pn+q的数列是等差数列,公差为p,首项为p+q.

答案:A

4.已知等差数列a1,a2,a3,…,an的公差为d,则ca1,ca2,ca3,…,can(c为常数,且c≠0)是 ( )

A.公差为d的等差数列 B.公差为cd的等差数列

C.非等差数列 D.以上都不对

思路分析:由an-an-1=d,得can-can-1=c(an-an-1)=cd.

答案:B

5.在数列{an}中,a1=2,2an+1=2an+1,则a101的值为 ( )

A.49 B.50

C.51 D.52

思路分析:先判断数列{an}为等差数列,公差为 ,再由通项公式求a101.

答案:D

6.等差数列{an}的首项为70,公差为-9,则这个数列中绝对值最小的一项为 ( )

A.a8 B.a9

C.a10 D.a11

思路分析:由通项公式an=a1+(n-1)d写出an,再求绝对值最小时的n.

答案:B

7.在等差数列{an}中,a2=-5,a6=a4+6,则a1等于 ( )

A.-9 B.-8

C.-7 D.-4

思路分析:由题意列出a1,d的方程组,求解.

答案:B

8.lg( - )与lg( + )的等差中项为 ( )

A.0 B.lg
C.lg(5-2 ) D.1

思路分析:由等差数列的定义求解,结合对数运算性质.

答案:A

9.设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于 ( )

A.0 B.37 C.100 D.-37

思路分析:由{an},{bn}为等差数列,得{an+bn}也为等差数列.

答案:C

10.在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8等于 ( )

A.45 B.75 C.180 D.300

思路分析:由等差数列的性质知a3+a7=a4+a6=2a5,再求解.

答案:C

11.在等差数列{an}中,a15=33,a25=66,则a35=________.

思路分析:由d= 求出公差,再由a35=a25+10d求解.

答案:99

12.48,a,b,c,-12是等差数列中的连续5项,则a,b,c的值依次为_________.

思路分析:由已知得a1=48,a5=-12,可求出d,再求出a2,a3,a4即分别为a,b,c的值.

答案:33,18,3

13.梯子的最高一级宽33 cm,最低一级宽110 cm,中间还有10级,各级宽度成等差数列,计算中间各级的宽度.

思路分析:要求梯子中间各级的宽度,必须知道各级宽度组成的等差数列的公差.又梯子的级数是12,因此,问题相当于已知等差数列的首项、末项及项数求公差.

解:用{an}表示题中的等差数列,由已知有a1=33,a12=110,n=12,

由通项公式得a12=a1+11d,即110=33+11d.解得d=7.

因此a2=33+7=40,a3=40+7=47,…,a11=96+7=103.

答:梯子中间各级的宽度从上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.

综合训练

14.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?

解:∵an=3n+2,bk=4k-1,

两数列共同项可由3n+2=4k-1求得.

∵n= k-1,而n∈N*,k∈N*,

∴k=3r,r∈N*,得n=4r-1.

由已知 解得 ≤r≤ .

∵r∈N*,

∴共有25个共同项.

能力提升

15.一个等差派生数列的单调性

各项都为正数且公差不为零的等差数列a1,a2,a3,…,an,把离首末两项“距离”相等的两项之积排成数列,则该数列是 ( )

A.递减数列 B.递增数列

C.奇数项递增、偶数项递减的数列 D.先增后减的数列

思路分析:取满足已知条件的数列1,2,3,4,5,6.则按题目要求得到派生数列6,10,12,12,10,6. (*)

根据数列(*)特点便可排除A、B、C.那么选项D正确吗?数列(*)是先增后减的数列,递增递减也是有规律的.我们会想:对满足条件的任意等差数列是否都有此结论呢?我们研究下面的命题:

a1,a2,a3,…,an(n≥3)是公差不为零的等差数列,a1an,a2an-1,…,an-1a2,ana1是一个先增后减的数列,并且中间项最大.

设等差数列{an}的公差为d,记数列a1an,a2an-1,…,an-1a2,ana1的第k项为bk,则bk=akan-k+1(k∈N*),

∴bk+1-bk=ak+1an-k-akan-k+1

=(ak+d)(an-k+1-d)-akan-k+1

=(an-k+1-ak)d-d2.

①若n为奇数,当k< 时,bk+1>bk;当k> 时,bk+1<bk.

∴b1<b2<…< < > >…>bn.

∴{bn}是一个先增后减的数列,并且中间项最大.

①若n为偶数,当k< 时,bk+1>bk;当k= 时,bk+1=bk;当k> 时,bk+1<bk.

∴b1<b2<…< = > +2>…>bn.

∴{bn}是一个先增后减的数列,并且中间两项相等且最大,都等于 .

综上证明知,a1an,a2an-1,…,an-1a2,ana1是一个先增后减的数列,并且中间项最大.故选D.

答案:D

共同进步

请和同学一起阅读下面的材料并思考材料之后的问题.

有一种零存整取的储蓄项目,是一种事先约定金额,逐月按约定金额存入,到期支取本息的定期储蓄.人民币5元即可起存;存期选择多:包括一年、三年、五年;每月需以固定金额存入:每月某日存入一笔相同金额,这是零存;到一定时期到期,可以提出全部本金及利息,这是整取.计算零存整取的储蓄利息:一般家庭只采用“月积数计息”方法.其公式是:利息=月存金额×累计月积数×月利率.其中:累计月积数=(存入次数+1)÷2×存入次数.

据此推算一年期的累计月积数为(12+1)÷2×12=78.以此类推,三年期、五年期的累计月积数分别为666和1 830.储户只需记住这几个常数就可按公式计算出零存整取储蓄利息.例:某储户1997年3月1日开立零存整取户,约定每月存入100元,定期一年,开户日该储种利率为月息4.5‰,按月存入至期满,其应获利息为:应获利息=100×78×4.5‰=35.1元.我们可以归结它的本利和公式如下:

本利和=每期存入金额×〔存期+ 存期×(存期+1)×利率〕.

设每期存入金额A元,每期利率为p,存期数为n,则各期利息之和是Ap+2Ap+3Ap+…+nAp= n(n+1)Ap.连同本金,就是本利和=nA+ n(n+1)Ap=A〔n+ n(n+1)p〕=每期存入金额×〔存期+ 存期×(存期+1)×利率〕.

零存整取不是最佳的储蓄方法,随着时代的发展,它有它的局限性,如:提前支取的损失较大.如果因用钱需要提前支取零存整取存款,即使你已经存了11个月,也只能按活期计息.存储方式不易操作:按现行规定,零存整取必须每月都要去银行续存,如果连续两次不按时存储,此后续存的款项就会按活期计息.再如:额度欠灵活.零存整取每月存入的额度是固定的,不能中途更改,适合过去拿固定工资的时代.

思考:1.若每月存入100元,月利率为5.1‰,到第12个月底的本利和是多少?

2.若每月初存入一笔资金,月利率为5.1‰,希望到第12个月底取得本利和2 000元,那么每月应存入多少元?

3.请你和你的同学探讨一下其他的储蓄方法,比较哪种更适合你们自己的家庭.

学海拾贝

历史上的等差数列

在南北朝时,于466年~484年,张邱建写了一部算经,世人称《张邱建算经》,在这本算经中,张邱建把等差数列的研究向前推进了一步.

例(卷上第十八题)

“今有十等人,每等一人,官赐金以等次差降之,上三人先入,得金四斤,持出.下四人后入,得金三斤,持出.中间三人未到者,亦依等次更给.问各得金几何,及未到三人复应得金几何.”

按照术文,本题解法分三步:

第一步,求出公差d:

“以先入人数分所持金数为上率,以后入人数分所持金数为下率.二率相减,余为差实.并先后入人数而半之,以减凡人数,余为差法.实如法而一,得差数.”

用现代符号,记后入人数为n1,后得金为S1,先入人数为n3,先得金为Sm,则上面的术文即d= ,亦即d= .

若记未到人数为n2,则d= .

第二步,把后入四人所得金数视为一等差数列,问最下等人所得金数,这相当于已知d,Sn,n,求a1,术文给出a1= .

第三步,把十人各得金数视为一等差数列,求每人的金数,这相当于已知a1,d,n,求an,术文给出an=a1+(n-1)d.

张邱建提出的问题及解法,有的是继承了以往的成果,更多的则是创新.这说明至迟在五世纪,中国数学已具备了系统的等差数列的理论,同类结果一直到七世纪初才在印度梵藏的著作中出现.

热心网友 时间:2022-04-24 06:50

没看明白你的题目可以再解释下吗?
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
香港电影有一部是两个女人能变蟒蛇的电影 期房需先交哪些钱 期房交定金之后多久交首付可以延期吗 期房定金后多久交首付可延期? 为什么考驾照就是紧张过不去,为什么 考驾照的考场是什么样的 moll是什么单位 法定单位规定物质的量用“mol”表示的优点是什么 物质的量的单位 摩尔 淘宝新手推广网店的十大方法,怎么做好推广? 淘宝网店怎么做推广? 等差数列求和题目 高中数学,等差数列求和问题 未成年人低保户能买商业保险吗查到会被取消资格吗 低保户可以购买保险 吃低保家庭买了商业保险及时退保了,会影响继续吃低保吗? 根据我国现在的民法,低保人员可以买百万医疗险吗? 低保可以享受医疗保险 低保户可以买商业重疾险吗? 农村低保户可以买商业保险吗? 低保家庭能买商业保险?对低保有影响吗 ...我自己有买商业保险。低保的地方报销住院医疗也后,商业保险还可以理 ... 低保人群可以买保险吗 低保人群可以买保险吗? 低保户可以买商业险吗 低保能买保险吗? 孩子吃低保可以给他买商业保险吗? 低保户买商业险有影响吗 低保户买商业保险,会被取消低保资格吗? ...系统安全等级保护定级指南》,信息系统的安全保护等级由哪两个定级... vivox5pro系统升级后微信和手机上的字体怎么改 寻高二数列求和例题 高中数学等差数列求和大题,求解 几道高中等差数列的简单数学题!虽然我不会…麻烦各位高手了! 高中数学等差数列求和公式推导 数学必修五数列 有谁能归纳一下等比等差数列求和方法(带例题) 问一道高二等差数列求和问题!!!回答详细,高分悬赏~~~ 等差数列求和习题 关于高中数学等差数列的公式? 高中等差数列求和练习题 高中等差数列题 高中数学等差数列应用题 高中数学·等差数列求和.:) 数列求和列项求和例题 等差数列通项求和 高中数学 一道题 。 做不来 求解 出国留学的个人陈述(Personal Statement) 怎么写? 澳洲留学:个人陈述PS到底怎么写 出国留学申请如何写好自己的个人陈述? 留学文书的个人陈述怎么写? 在留学申请中,如何写个人陈述能给自己加分? 请教出国留学的个人陈述如何写?