发布网友 发布时间:2022-04-26 14:43
共1个回答
热心网友 时间:2022-05-01 20:19
主要从下面三部分展开:
1、了解什么是深度学习,深度学习是机器学习与神经网络、人工智能、图形化建模、优化、模式识别和信号处理等技术融合后产生的一个领域。在严谨的学术期刊中,这个新兴学科的模型一直受严肃理智的学者所推崇:"深度学习网络是神经网络*性的发展,人们甚至认为可以用它来创建更强大的预测模型。”
2、深度学习的流程
在学习深度学习的核心思想时,我们采取的通用方法一般如下图所示。无论开发什么类型的机器学习模型,最终都回归到这个基本模型。输入数据传递给模型,经过多个非线性层进行过滤,最后一层包含分类器——决定该对象所属的种类。
用数据进行学习的目标是预测响应变量或者用一组给定的属性对响应变量分类。这与线性回归有点类似,在线性回归中,用一组独立变量(也叫属性或特征)通过一个线性模型来预测因(响应)变量。不过,传统的线性回归模型并不被视为深度学习,因为它们没有对数据进行多层的非线性变换。
其他流行的数据学习技术有决策树( decision tree ) 、随机森林( random forest )和支持向量机(support vector machine )。这些技术虽然强大,但是并不深入。决策树和随机森林工作在原始输入数据上,不进行变换,也不生成新特征;支持向量机层次较浅,因为它们仅由核函数和线性变换组成。类似地单隐藏层神经网络也不被视为深度神经网络,因为它们只包含一个隐藏层。
3、深度学习能解决什么问题
深度学习的威力来自于用适量的并行非线性步骤对非线性数据进行分类或预测的能力。从原始输入数据到数据的实际分类的过程中,深度学习模型学习输入数据的分层特征。每一层从前一层的输出中提取特征。深度学习模型是有多个隐藏层的神经网络。如下图所示,最简单的深度神经网络至少包含两层的隐藏神经元。其中每一层的输入来自上一层的输出。
多层深度神经网络有多个非线性层级,可以紧凑地表示高度非线性的和/或高度变化的函数。它们擅长识别数据中的复杂模式,可以用来改进计算机视觉和自然语言处理等工作,并可以解决非结构化数据难题。