问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

关于线性代数非齐次线性方程组的特解问题255

发布网友 发布时间:2023-09-15 04:53

我来回答

5个回答

热心网友 时间:2024-11-17 00:47

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。

扩展资料

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

概念

线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。

所谓“线性”,指的就是如下的数学关系:

 

。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系

 

参考资料:百度百科 线性代数

热心网友 时间:2024-11-17 00:47

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。

扩展资料:

线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。

非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。

线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。

·每一个线性空间都有一个基。

·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

·矩阵非奇异(可逆)当且仅当它的行列式不为零。

·矩阵非奇异当且仅当它代表的线性变换是个自同构。

·矩阵半正定当且仅当它的每个特征值大于或等于零。

·矩阵正定当且仅当它的每个特征值都大于零。

·解线性方程组的克拉默法则。

·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

参考资料:百度百科-线性代数

热心网友 时间:2024-11-17 00:48

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。

扩展资料:

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。

线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。

非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。

线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。

·每一个线性空间都有一个基。

·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

·矩阵非奇异(可逆)当且仅当它的行列式不为零。

·矩阵非奇异当且仅当它代表的线性变换是个自同构。

·矩阵半正定当且仅当它的每个特征值大于或等于零。

·矩阵正定当且仅当它的每个特征值都大于零。

·解线性方程组的克拉默法则。

·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

参考资料:百度百科-线性代数

热心网友 时间:2024-11-17 00:48

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。


向左转|向右转

热心网友 时间:2024-11-17 00:49

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.
其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.
4 个未知数,2 个方程,任意给出 2 个未知数的值,
算出另 2 个未知数,都可以得到 1 组特解,
只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
手机导航地图语音怎么下载 如何分别真金和仿金首饰 怎样区分真金和仿金首饰呢 小学生新年晚会主持人的串词!!(不要太多)急 大大后天就需要了!!!_百度... 周年晚会策划公司 奥格瑞玛传送门大厅在哪 奥格瑞玛传送门大厅怎么走 锻炼颈椎的几个动作 水多久能结冰 冰能在多长时间内形成 请问水低于0度会结冰吗? 如何防止脱发严重 魔力宝贝 转职和恢复游民 声望一样么 麻烦高端玩家给解答下 ...1 广播电视编导和戏剧影视文学哪个专业好过??那个前途更光明??...7 梦见黄家驹了14 昨晚梦到家驹了1 线性代数中非齐次线性方程组的解向量和特解一样吗?10 线性代数:齐次线性方程,''特解''和''解'''含义相同吗...5 魔力宝贝怎么学习恢复魔法6 中山小榄有什么好玩的地方?例如买衣服的商场和步行街之类的 广东中山有什么好玩的地方?1 求鬼片名字,连续剧。 什么软件赚钱能存入QQ钱包114 有一部大概是10年前的香港电视剧,讲的是一个女鬼和一个人相爱...5 大学新生应该准备些什么?35 什么软件赚钱能提现到QQ钱包70 中山市小榄镇有什么好玩的?广东.10 有女鬼的TVB版电视剧90年代或80年代的? 魔力宝贝怀旧版里怎么从有职业变游民?6 广播电视编导和戏剧影视文学哪个就业前景比较广一点?有推荐的一...1 有什么赚钱手机软件能提现到QQ钱包里?50 鬼片中插曲是<我等着你回来>是哪部?~`女主角名叫小芙蓉2 汽车拉缸是什么原因造成的?112 线性方程组中的特解是怎么求得的?348 魔力宝贝怎么玩?5 日本大阪产业大学好不好?8 为什么我的iphone和ipad蓝牙连接不起也~~~ 汽车拉缸是由什么原因造成的? 为何黄家驹现在突然火起来?492 成都理工大学新生入学床单需要买学校的吗?如果自带,可是没有床...2 西南财大必须要学习游泳么,还有住校提供哪些东西,比如说棕垫、...15 3.5等于多少ms等于多少微秒 为什么那么多人喜欢黄家驹?809 卡罗拉儿童锁怎么解锁?18 昨晚梦见黄家驹了 咋回事啊? 还让我上台和他们唱歌呢 0.125km等于多少微米1 为什么说登闻鼓能敲十三下 线性代数,解非齐次线性方程中两个特解相加还是方程的特解吗61 卡罗拉儿童锁怎么解锁?37 请问各位网友性格内向不善交集的人适合做客服类的工作吗? 关于日本大阪产业大学的一些问题 80分8 关于2010年辽河油田招聘的问题?