发布网友 发布时间:2022-04-26 09:08
共2个回答
热心网友 时间:2022-06-26 10:01
量子力学中,哈密顿算符(Hamiltonian) H为一个可观测量(observable),对应于系统的总能量。一如其他所有算符,哈密顿算符的谱为测量系统总能时所有可能结果的集合。如同其他自伴算符(self-adjoint operator),哈密顿算符的谱可以透过谱测度(spectral measure)被分解,成为纯点(pure point)、绝对连续(absolutely continuous)、奇点(singular)三种部分。纯点谱与本征矢量相应,而后者又对应到系统的束缚态(bound states)。绝对连续谱则对应到自由态(free states)。奇点谱则很有趣地由物理学上不可能的结果所组成。举例来说,考虑有限势阱的情形,其许可了具有离散负能量的束缚态,以及具有连续正能量的自由态。热心网友 时间:2022-06-26 10:02
哈密顿算符(Hamiltonian) H为一个可观测量(observable),对应于系统的的总能量。一如其他所有算符,哈密顿算符的谱为测量系统总能时所有可能结果的集合。如同其他自伴算符(self-adjoint operator),哈密顿算符的谱可以透过谱测度(spectral measure)被分解,成为纯点(pure point)、绝对连续(absolutely continuous)、奇点(singular)三种部分。