久期怎么算
发布网友
发布时间:2022-04-26 09:55
我来回答
共1个回答
热心网友
时间:2022-06-27 01:52
久期的计算需要先了解当前的市场价格、现金流现值和到期时间等等数值,把这些数值套用到专业的公式中就可以算出久期的价格。久期可以反映债券价格的波动程度,一般来说久期持续的时间越长,该债券应对的风险也就越大,因为利率对债券的影响度在不断提高。
【拓展资料】
久期也称持续期,是1938年由F.R.Macaulay提出的。它是以未来时间发生的现金流,按照收益率折现成现值,再用每笔现值乘以现在距离该笔现金流发生时间点的时间年限,然后进行求和,以这个总和除以债券价格得到的数值就是久期。概括来说,就是债券各期现金流支付所需时间的加权平均值。金融概念上也可以说是,加权现金流与未加权现金流之比。
久期,全称麦考利久期-Macaulay ration, 数学定义
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
通过下面例子可以更好理解久期的定义。
例子:假设有一债券,在未来n年的现金流为(X1,X2,...Xn),其中Xi表示第i期的现金流。假设利率为Y0,投资者持有现金流不久,利率立即发生升高,变为Y,问:应该持有多长时间,才能使得其到期的价值不低于利率为Y0的价值?
通过下面定理可以快速解答上面问题。
定理:PV(Y0)*(1+Y0)^q<=PV(Y)(1+Y)^q的必要条件是q=D(Y0)。这里D(Y0)=(X1/(1+Y0)+2*X2/(1+Y0)^2+...+n*Xn/(1+Y0)^n)/PV(Y0)
q即为所求时间,即为久期。
上述定理的证明可通过对Y导数求倒数,使其在Y=Y0取局部最小值得到。